
NASA Contractor Report 187451

KNOWLEDGE REPRESENTATION INTO ADA
PARALLEL PROCESSING

Tom Masotto

Carol Babikyan
Richard Harper

THE CHARLES STARK DRAPER LABORATORY, INC.

Cambridge, Massachusetts 02139

Contract NAS1-18565

July 1990

National AeronautiCS and

S0ace Admm_stratLon

Langley Research Center

Hampton, Virginia 23665-5225

( NA S A_ C __ 11..87.a,_ t ) KNO_L_[,)GE p,_pRESEN TAT [',2N

INTO Ada PARALLEL peUCESS[NC Final _eport..
(Draper (£h3rles _.tark) Lab.) 139 pCSCL 09B

63/o2

N91-1393_



1LI4L _



NASA Contractor Report 187451

KNOWLEDGE REPRESENTATION INTO ADA
PARALLEL PROCESSING

Tom Masotto

Carol Babikyan
Richard Harper

THE CHARLES STARK DRAPER LABORATORY, INC.

Cambridge, Massachusetts 02139

Contract NAS1-18565

July 1990

N/L A
Nat_onat Aeronautics and

Soace Admi nislr.ation

Langley Research Center

Hampton, Virginia 23665-5225



III



• TABLE OF CONTENTS

Title

1.0

2.0

3.0

4.0

Page

INTRODUCTION .............................................................
1.1
1.2
1.3
1.4

..,,...,,°1

The Activation Framework ................................................. ,2

The Candidate Application .......................................................... 5
Another Candidate AppLication ..................................................... 8
The Fault Tolerant Parallel Processor .............................................. 11

1.4.1 Architecttwal Overview ......... , .................................... 11
1.4.2 Communication Mechanisms .............................................. 14

1.4.2.1 Voted Message ................................................... 14
1.4.2.2 Source Congruency Message ................................... 17

1.4.3 Synchronization ............................................................. 19
1.4.4 Operating System Functions ............................................... 21

1.4.4.1 Scheduler .......................................................... 22

1.4.4.2
1.4.4.3
1.4.4.4
1.4.4.5
1.4.4.6

Message Handling ............................................... 22
Tune Keeper ........................ . .............................. 23
Front End Processor Host ......... . ............................ 23

Fault Detection and Identification :. ......... . .................. 24
Reconfiguration ...25

THE
2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8

AF-FTPP MODIFICATIONS AND UTILITIES ................................. 29
The Rules to EFG and EFG to AFOs Translators ................................ 29
The Interface between the Activation Framework and the FTPP

Operating System ..................................................................... 32
2.2.1 AFO Scheduling ........................................................ "..32
2.2.2 AFO Message Transmission ............................................... 35
2.2.3 AFO Message Reception ................................................... 36
2.2.4 Performance Timing ........................................................ 36
The Modification of the Activation Framework ................................... 38

The Modification of the Activation Framework Objects ......................... 39
The "VOX" to "a.out" Translator ................................................... 40
The Load Balanccr ................................................................... 40
The Automatic Load Module Generator ........................................... 42

Remote Data Insertion and Capture ...................... .;... ..................... 45

DEVELOPMENT ENVIRONMENT ..................................................... 47
3.1 Translation to AFOs .................................................................. 48

3.2 Compilation of AFOs and AFO/AF Interface Modules .......................... 49
3.3 Load Balancing ....................................................................... 50
3.4 Load Module Creation ............................................................... 51

PERFORMANCE MEASUREMENTS .................................................. 53

4.1 PreLiminary Performance Measurements .......................................... 53
4.2 Enhancements in the AF and AFOs ................................................ 55

4.3 Performance of the Event Diagnosis Expert ....................................... 57
4.4 Performance of the Event Diagnosis Expert with Simulated

Computational Load .................................................................. 61
4.5 Performance of the Event Diagnosis Expert Using a Hand Generated

Distribution ...................................................................... ...... 65

• II

_E [% )))':.':'_;)0tCALL) _t))4 _,

iii

P_CED!NG PAGE BLANK NOT FILMED



5.0

6.0

7.0

A.

B.

C.

4.6

4.7
4.8
4.9
4.10

4.11

Performance of the Event Diagnosis Expert Using the Dependency Load
Balaneer ............................................................................... 67

Distributing the Work Load of the System Output AFO ......................... 74
Performance of the Real-Time Controller ......................................... 80
Performance of the Real-Time Controller with Distributed Output ............. 88

Improving the Activation Framework Scheduler ................................. 89
4.10.1 Impact on the Event Diagnosis Expert ................................... 89
4.10.2 Impact on the Real-Time Controller ...................................... 93
Performance Evaluation with Redundancy Management ........................ 94

97PERFORMANCE IMPROVEMENTS ..................

CONCLUSION ............................ 99

REFERENCES .............................................................................. 103

APPENDIX A - SOFTWARE SPECIFICATIONS .................................... 105

APPENDIX B - MODIFICATION OF THE ACTIVATION FRAMEWORK ...... 123

APPENDIX C - PERFORMANCE METRICS ......................................... 129

C. 1 Description of the Intervals Measured .............. ?; .......... .................. 129
C.2 Performance Measurements Using the Network Element Simulator; ....... ... 133

C.2.1 Performance Measurements Before Enhancements ..................... 134
C.2.2 Performance Measurements After Enhancements ........................ 137

iv



1.0 Introduction

The goal of the Knowledge Representation into Ada Parallel Processing project (KRAPP)

is to host and execute an intelligent system on multiple processors of the Fault Tolerant

Parallel Processor (FTPP) [Har87]. The methodology that permits the parallelized

execution of an intelligent system was developed by Worcester Polytechnic Institute (WPI).

It is based on the use of an intelligent scheduling mechanism called an Activation

Framework (AF) ([Gre87], [Gre89]). Additionally, it utilizes a suite of Activation

Framework Objects (AFOs) to model the intelligence of the desired application. The

candidate architecture used in the KRAPP project was the FTPP. It was developed by

Charles Stark Draper Laboratory (CSDL) and is capable of providing high throughput

while offering extremely high reliability. The intention of the KRAPP project was to use

the FTPP to demonstrate that the AF paralletization methodology is feasible, to quantify the

gains attainable by paraUelizing a candidate application, and to evaluate the performance of

the AF and AFOs. --

The introductory Sections 1.1 through 1.4 discuss the Activation Framework

methodology, the two candidate applications, and the Fault Tolerant Parallel Processor

respectively. Section 2 discusses the utilities that were developed and the modifications

performed to permit the execution of the AF and the Event Diagnosis Expert on the FTPP.

Each utility is outlined and described separately. Section 3 gives an overall view of the

CSDL AF-F'TPP development system, discussing how each utility outlined in Section 2 fits

in and contributes to the system. Section 4 presents the performance metrics attained

during the KRAPP analysis, while Section 5 suggests areas for performance

improvements. Finally, Section 6 concludes the document with a summary of the primary

results and an outline of suggested future work.



1.1 The Activation Framework

As previously mentioned, the Activation Framework methodology was developed by

Worcester Polytechnic Institute. The method uses a set of Activation Framework Objects

to represent the intelligence of the designated application. Because the AF was developed

by WPI and is not CSDL's expertise, only a brief overview of the methodology is

presented in this document.

The AF is responsible for the initializing and scheduling the AFOs. During the initialization

process, the AF creates a list element for each AFO in the application. This AFO structure

is allocated by the AF to record the attributes associated with the AFO, such as its name and

importance (priority). The AF initialization process also allocates a list element for each

AFO input port. Similarly, this list element is used to store the•port's attributes. Further, it

records the presence of pending messages and their respective locations. To maintain these

lists and the other linked lists inherent in the AF methodology, WPI developed a List

Management System (LMS). This LMS provides the low-level functions necessary to

create a list header, to allocate or fred a list element, and to read or write a data object

When the AF determines the next AFO to schedule, it considers two criteria: the AFOs'

importance and the AFOs' priming conditions. The importance of an AFO is essentially its

priority. It is based on the number of pending input messages, is calculated using an

application specific (or possibly AFO specific) importance function, and is dynamic. An

AFO's priming conditions are the prerequisites that must be met before the AFO can be

scheduled, or f'tred. These conditions are application dependenh and typically they vary

from AFO to AFO. The fulfillment of an AFO's priming prerequisites depends on the

presence of messages at specific input ports. If any of an AFO's priming conditions has

been attained, then it is considered primed. Once primed, an AFO will be scheduled if it

has the highest importance of the primed AFOs. In other words, the AF determines which

AFOs are primed and, of this subset, executes the one with the highest importance.

A scheduled AFO executes until it is either preempted or finished. An AFO is preempted if

aprimed AFO exists that has a higher importance. For example, preemption situations can

arise when messages are communicated between AFOs. If the executing AFO sends a

message, then the associated destination AFO may become primed or its importance may

increase. If the message causes the destination AFO to be primed and this AFO's



importanceis greaterthan the executing AFO, then the AFO currently executing is

suspended and the other AFO is scheduled.

Preemption situations can also occur when an AFO removes a message from an input port.

When a message is retrieved from a port, then importance of the corresponding AFO

typically changes. If the message removal causes the executing AFO's importance to

decrease and another primed AFO exists that has a higher importance, then the executing

AFO is preempted and the other scheduled.

In addition to initializing and scheduling the AFOs, the AF supports the inter-AFO

communication. The AF also allows the AFOs to detect the presence of pending messages

and to re'eve them from their input ports.

As discussed earlier, the AFOs and their associated attributes (priming conditions, global

importance, interconnections, etc.) characterize the intelfigence of theapplication.

Representing an intelligent system as a parallel process, however, is a difficult task. An

attractive feature of the AF methodology is that these AFOs are automatically generated.

Specifically, the AFOs arc created by a Rules to AFO Translator. This Translator parses

and intcrprdts a set of rules (I-Iorn clauses) which model the application and generates a

corresponding suite of AFOs. After their creation, the AFOs can be integrated with the AF

and executed. Further, unlike the AFOs which vary from application to application, the AF

usually does not have to be changed.

The execution of the AF methodology on a parallel processor is illustrated in Figure 1.

Each processor hosts an image of the AF and is responsible for executing a subset of the

application's AFQs. The intra-processor message communication is supported by the AF.

Alternatively, the inter-processor data transfer is completed by the AF and an operating

system message passing mechanism.

3



AFO

i
AFO"

_wg

Activation Framework

!
[

!
!

I
i
!

li

AFO AFO

T
Activation Framework

I t
Operating System Message Passing Mechanism

Figure ! - The Activation Framework and
Activation Framework Objects

Figure 2 - The AF and AFOs on the FTPP

4



The implementation of theAF methodology on theFTPP isshown inFigure 2. An FTPP

load module iscreated,and itisdownloaded to and executed on each Virtual Group

(designatedby a VirtualGroup Identifieror VID). This loadmodule containsthe AF, the

suiteof AFOs, the FTPP Operating System, and the AF-FTPP Interface.The AF-FTPP

Interface,which was developed by Charles Stark Draper Laboratory under the KR.APP

project, permits the integration of the AF and AFOs with the FTPP Operating System. In

addition, it allows the scheduling of the AFOs as well as redundancy management tasks,

inter-VII) message communication, the observation of message traffic, and the

measurement of the performance of the AF.

Althoug h all VIDs host the entire APO suite, each VID is only responsible for executing a

subset of them. Further, like the intra-processor communication previously discussed, the

intra-VID message transfer is completed by the AF. The inter:VID data communication is

supported by the AF, AF-FTPP Interface, FTPP Operating System, and FTPP Network

Element (NE). The AF-FTPP Interface, FTPP Operating System, and the NE emulate the

operating system message passing mechanism.

1.2 The Candidate Application

Advanced military aircraft will host a wide variety of sophisticated avionics subsystems for

Terrain Following/Terrain Avoidance, threat avoidance, all-weather and night operations,

mission planning and optimization, and weapons delivery. The real-time management of

and assimilation of data from these complex functions is expected to seriously overburden

an already cognitively stressed aircrew. Consequendy, a computational system is needed

which will integrate and assess the vast quantity of information enq.anating from a multisen-

sot navigation suite to produce a meaningful yet compressed set of navigation status and

data for presentation to the airerew.

°.

It is anticipated that these functions will be computationally intensive and in some cases

mission-critical. Therefore it is of interest to demonstrate the feasibility of transitioning

knowledge-based representations of these intelligent navigational systems to a highly reli-

able, high-throughput processing system. A successful demonstration of this _x.)uld result

in a technology which can be used to facilitate the development of robust, high-throughput

artificial intelligence systems which will be required for programs such as the Pilot's

Associate or Space Station Freedom applications. It is the objective of the KRAPP pro-

gram to develop and demonstrate this technology.

5



Theapplicationselectedfor theKRAPPprogramis theAdaptiveTactical Navigator (ATN)

([Beri], [Ber2], [Gre87]). The purpose of the ATN is to supplant many of the functions

of the navigator in the next generation of Air Force attack aircraft. The ATN combines

artificial intelligence techniques, knowledge-based systems, and advanced navigation algo-

rithms. With the successful completion of the K1LAPP program, it will also have available

automated translation of high-level navigation system knowledge, expressed as Horn

clause rules, to parallelized Ada code which exhibits computational speedup on a high-

throughput high-reliability parallel processor.

The ATN is succinctly described in [Ber2]:

"The Adaptive Tactical Navigator (ATN) [Ach87] is ari intelhgent onboard

system which utilizes expert navigation sensors and their integration algo-

rithms to provide equipment management and pilot decision-aiding for the

multisensor navigation suite of future tactical aircraft. A navigation system

has been defined which is representative of the technology which is being

developed for operational aircraft in the mid-1990s. This navigation sys-

tem, which the ATN was designed to manage, includes the following: a

strapdown inertial navigation system (INS), Global Positioning System

(GPS), Synthetic Aperture Radar (SAR), Doppler Radar, an Electro-Optical

system (EO), Sandia Inertial Terrain-Aided Navigation System (SITAb0,

and a digital moving map display."[Ber2]

The ATN is functionally organized into six expert systems (see Figure 3). The fast three

manage the equipment suite and the second three perform decision-aiding functions. The

descriptions of these functions given below are paraphrased from ['Berl].

I_gtuipment Management Functions:

The Navigation Source Manager experts use engineering design models to monitor

equipment performance and to detect and isolate equipment failures or degradations.

The System Status expert diagnoses system health based on reliability data, recent

maintenance patterns, current mission environment, and lower-level diagnoses.



' .[ Bus I/O via
Front End I_

Processor ITM

Pilot - Vehicle
Interface Manager

Event Diagnosis
Expert

Mission Manager

System Status Expert Moding Expert

f Navigation Source

Figure 3 - The Adaptive Tactical Navigator

The Moding expert configures viable component combinations based on current

equipment status and determines appropriate handoff strategies for mode changes.

Decision-Aiding Functions:

The Event Diagnosis expert evaluates planned navigation events, such as way'point

encounters and destinations, and diagnoses anomalous or out-of-spee events to

support pilot moding decisions.

The Mission Management expert stores mission plan and environment data and

determines which available equipment configurations ate appropriate for the current

and forecast mission situation.

The _ilot-Vehlcle Interface Management expert manages communication between

the ATN and the pilot in a manner appropriate for the current mission phase.

The KRAPP program uses a portion of the Event Diagnosis expert of the ATN as its

demonstration application.

7



health jtids

m

sol
ao

des

Figure 4 - The

system
output _

Event Diagnosis Expert:

The subset of Event Diagnosis Expert employed by KRAPP was characterized using eight

Horn clauses, or rules. An AFO was used to represent each rule, and five AFOs were used

for the input and output facilities. Accordingly, the AF version of the Expert involves

thirteen AFOs. This AFO suite and its associated inter-connectivity are illustrated in Figure

4.

1.3 Another -Candidate Application

Although the Event Diagnosis Expert is a suitable rule set to exercise the dynamics of the

Activation Framework and its interaction with the FTPP operating system, there were a

number of motivating factors toward the selection of a more complex application:

l, The originm translators (Rules to EFG and EFG to AFOs) were riddled with

specific references to the Event Diagnosis Expert parameters essentially

making the translators specific to this particular application. Consequendy,

rather than tailoring the translators for each subsequent application, it was

8



highly desirable to generalize these translators to permit relatively painless "

implementation of other applications. Furthermore, the generalized translators

should handle all input/output connectivity relations. The application of

generalized translators to another serious test case ensures not only that

complex data dependencies are corn_cfly implemented but also that all old

vestiges of the Event Diagnosis Expert are removed.

2. The Event Diagnosis Expert application consisting of only 13 AFOs generated

a suite of a mere 13 tasks. In terms of computational load and memory

allocation this scenario underutilizes the FTPP capabilities which has 1S

available processors for assignment of tasks. A significantly larger task suite

would approach the limits of the FTPP's operational activity.

3. In order to develop a sophisticated load balancing algorithm a sufficiently

complex data/task dependency graph is necessary, to visualize the parameters

which should be optimized.

=

A Real Time Controller was selected as this candidate application to which the AF

methodology was applied. Figure S depicts the data dependency relations for the Real

Time Controller. This task suite consists of $6 tasks, seven of which are input nodes;

these tasks with the necessary output task generate a 57 AFO suite.

9



f

f

• v
• r

Figure 5 - The Real Time Controller Data Dependencies

10



z

1.4 The Fault Tolerant Parallel Processor

1.4.1 Architectural Overview

The basic unit on the FTPP is the cluster which contains four network elements and the

associated processors (see Figure 6). The network element (NE) is a Draper designed

component. The four NEs are fully connected and operate in tight synchrony within the

network element core to perform message exchanges and to vote message exchanges.

Messages entering the NE core are exchanged and voted according to the class parameter of

the message. In addition, since messages are addressed using unique identifiers, the

operation of the NE is highly contingent upon the system configuration in identifying the

physical hardware associated with these source and destination addresses.

In the FTPP prototype cluster 1 (C1), each network element hosts up to four processing

elements (PE) each of which are standard processors with local memory. The processors

currently employed are Motorola 68020 processors; however, this selection iS not a design

criterion and, in fact, the FTPP is capable of supporting heterogeneous processors. Each

processor communicates with the hosting NE via transmit and receive FIFOs which the

processors access via a VSB bus.

Each network element and the associated processors comprise a fault containment region

which satisfies the requirements for fault containment, namely, electrical isolation, physical

isolation, independent power and independent clocking.

Virtual groups are logical views of the processing resources capable of accepting work in a

parallel processing environment. Using this concept, the physical addresses of the

processors as well-as the redundancy level of a processing group can be concealed from the

view of the programmer. A unique identifier is assigned to each virtual group; this is the

virtual group identifier (VII)). Virtual groups can be composed of any number of

processors up to 4 processors; consequently, they may be simplex, duplex, triplex or

quadruplex. Within a VID each processor is a channel (also referred to as a member). In

the case of a quadruplex, the first channel is designated channel A; the second, channel B;

the third, channel C; and the fourth, channel D. Similarly, simplexes have only channel A

components: When operating redundantly, each processor within a VID executes a suite of

tasks which are functionally congruent with the other members of its VID. For example, in

an avionics application each processor of a redundant virtual group would execute the same

1l



navigationtaskonidentical inputs. On the other hand, simplex VIDs are merely individual

processors executing tasks with no redundancy. VIDs are comprised of processors each of

which must be resident in a different fault containment region in order to satisfy the

theoretical requirements of Byzantine resilience. For example, a quadruplex would

comprise processors resident on each NE.

Member of virtual

group Q1

FIFO address

Processing Element (PE)

Member of virtual

group Q1

i :!i!i!i!:::Z:!:!ZI!!I?:L!!!

:0

+
Member of virtual

group Q1

Figure 6 -

\ /
NE2

/

Network Element (NE)

Fault Containment
Region

Member of virtual

groupQ1

FT_PP Cluster Architecture

Q1 Quad 1
T1 Triad I

$1-9 Simplexes 1-9

Fault tolerance on the FTPP is ensured by grouping 3 or 4 processors into VIDs called fault

masking groups (FMG). Fault manifestations in a fault masking group can occur without

12



anydegradationin systemperformanceor correctness.Furthermore, these faults can be •

readily diagnosed.

The system configuration table is the mapping of processors to the virtual group identifiers.

This mapping identifies the NE hosting the processor as well as the FIFO address through

which the processor communicates with the NE. Since all communication within the

system is based upon the VID, the system configuration table is resident in the network

elements as well as in the processors. Maintenance of this table is provided by a special

broadcast message interpreted by both processors and NEs and by adherence to a strict

protocol when the system configuration is modified.

Figures 6 and 7 define a sample system configuration consisting of I quadruplex, 1 triplex,

and 9 simplexes. -.

Q1

T1

$1

$2

S3

$4

$5

$6

$7

$8

$9

VID Member NE id FIFO id

A 0 0

1 .0

Figure

12

9

C

D

A

B

C

i i

i H,

2

3

3

0

0

0

0

1 A .. 2

2 A 0 3

A 28

4

0

3

2 1

22

2

A

A

A

A 3
i

A 3 2

A 3 3

3

11

10

7 - Sample Configuration Table

13



)

1.4.2 Communication Mechanisms

Virtual groups communicate via messages which are of 4 basic classes: voted messages,

source congruency messages, a synchronization message, and configuration update

messages. A voted message is one sent by all members of a redundant processing group.

This message type is employed only when exact consensus amongst all redundant members

is expected. Conversely, a source congruency message is originated by a simplex

processor or by a member of a redundant processing group requiring a channel-specific

exchange of information. The synchronization message is employed to synchronize

members of a virtual group. The configuration update message is initiated by a virtual

group to modify the VID/processor mapping resident both in the network elements and in

the processors.

Each member of a VID requests a message transmission by sending the message body to its

associated transmit FIFO followed by storing the message class in the class FIFO. If a

majority of members of a VIE) request a transmission, the class is voted by the NE core to

determine the exchange and voting mechanisms. In addition, the destination VID is voted.

Subsequently, the message body is manipulated according to the message class.

Message processing within the network element core is handled on a VID-by-VID basis.

When a majority of the members of the source VID request transmission of a message, that

message is eventually processed and delivered to all members of the destination VID.

Consequently, the ordering of messages to the destination VID is preserved, thereby

guaranteeing that all members of the destination VID receive messages in the same order.

Redundant members of VIDs execute functionally congruent tasks. Since their sequence of

tasks is congruent across all members, messages transmitted during their norrnal executing

cycles will necessarily t_ equivalent as well. Therefore, the message streams emanating

from the different members will be identical at least in the message class when no fault

exists. This concept is the basis of functional synchronization which is discussed in a

subsequent section.

14



1.4.2.1 Voted Messages

When the redundant members of a VID transmit a class 1 message (voted message) the

NEs exchange their copies of the message, create a bitwise voted copy of the message, and

compare each copy with the voted copy. This final step generates a vote syndrome which

is appended to the message. Network elements which host members of the destination VID

deliver the message to the appropriate FIFO; other NEs discard the message.

Figures 8 through 10 depict the transmission of a message x from the triply redundant VID

1 to VID 2 which is also configured as a triplex.

NE3

4321

Figure 8 - Transmission of Class 1 Message

15



12 34NEI

Figure 9 - Network Element' Exchange of Class I Message

NE3

Figure 10 - Delivery of Class 1 Message

16



_ . °

1.4.2.2 Source Congruency Messages

Class 2 messages contain channel-specific information such as the value of a processor

clock. The network elements perform 2 rounds of exchange of this message, create a

bitwise voted copy of the "reflected" copy and compare each "reflected" copy with the

voted copy to generate the vote syndrome. Delivery of this message is similar to that of

class 1 messages.

Since each NE operates simultaneously on only 1 message, each member of a fault

masking group must agree upon which member's channel-specific data are being

exchanged. This is achieved by the definition of 4 different class 2 messages. A "class 2

from A" message identifies the VID member A as the source of the message information.

However, all members of the VID must participate in the transmission of the "class 2 from

A" message. This requirement is necessitated by the fact that the NEs vote. the message

class from each member of the transmitting VID. If one member transmits a "class 2 from

A", the second member sends a "class 2 from B" and the third member sends a "class 2

from C" simultaneously, there will be no consensus on the class of the message. A bitwise

voted class is generated and the messages from each member of the sending VIE) are

handled according to this voted class. Therefore, in order to perform an exchange of

information where each member receives each other's copy of some information, a series

of messages containing this information must be sent by each member of the VID. Each

member of a triply redundant VID must sequentially send a "class 2 from A" message, a

"class 2 from B" message and a "class 2 from C" message.

Figures 11 through 13 describe the sequence of events in the processing of a class 2

message. The delivery of a class 2 message is identical to the delivery of a class 1 message

depicted in Figure 10.

17



4321

Figure 11 - Transmission of Class 2 Message

1234N'EI

o , ,o _N_ r-"-i /_

_ 0

Figure 12 - Network Element Exchange of Class 2 Message

18



Figure 13 - Network Element Exchange of "Reflected" Class 2 Message

1.4.3 Synchronization

As stated earlier, each member of a VID executes a suite of tasks which are functionally

congruent with the other members of the VID. In order to reduce the time skew among the

members they must perform some synchronizing act. Since syn'chronization occurs after

some function or sequence of functions has been completed, this methodology has been

termed functional synchronization. To maintain synchronous operation, members of a VID

must periodically synch_nize. This sequence of functions between synchronization points

is referred to as a frame in Figure 14.

The implementation of functional synchronization requires that the sending VID also

receive the synchronization message. The process "known as scooping implements this

e0ncept (see Figure 15). In essence, a task wishing to perform a functional

synchronization sends a scoop message to its own VID. Messages received prior to this

scooped message are stamped as readable. Furthermore, due to the fact that the NEs are

19



tightly synchronized,eachmemberof the synchronizing VID is guaranteed to receive the

message within a bounded skew of its other members.

FMG
Member

0

FMG
Member

1

FMG
Member

2

wait

wait

wait

"Absolute" time

wait

ire

_¥

Figure 14 - Functional Synchronization

v

FMG
Member

0

FMG
Member

1

FMG
Member

2

delivery
of

message
A

N

-.

. T_II

delivery
of

message
B

_p

OO0 7:::'_:7:7::-:""._:::

,i

-_:;::_._.'-"

:--'_:::.,_:::

_}i-'_-'.-'_:-

_livary
of

message
C

'_-::i_-:::-:_.

_.:':_.<::_::

_._:i:-:i _:_:_:

Nt

delivery
of

-.::_

Figure 15 - Scooping a Message

20



Functionalsynchronizationis implementedby sending a class 0 message via the sync_self

primitiveor by performing a scp_msg primitive. Both of these scooping mechanisms

transmit a special message and block awaiting its return without rescheduling any other

tasks. Recognition of this special message is achieved by comparing all incoming

messages with the known message. The sync_self primitive sends a class 0 message

which has no message body; therefore, only the class of the incoming messages needs be

examined. On the other hand, the scp_msg primitive does transmit a complete message

requiring inspection of all incoming message bodies until the special message has arrived.

Upon resumption of the task calling these primitives, the members of the VID are

synchr0n!zed. The use of the sync_self mechanism is limited by the fact that the source

and destination VIDs must be identical. However, scp_msg messages also may include the

set of broadcast messages. _

Inter-virtual group synchronization among VIDs is providedsimply by sending messages

without the tight synchronization of the inwa-VID protocols. The time when the message is

transmitted by one VID and delivered to another VID is not constrained. In fact, unless the

message is broadcast, the sending VID receives no explicit acknowledgement that the

message has been delivered. It can only be guar_teed that the message will be delivered in

the order sent and that the time of delivery to the redundant recipients will be bounded.

1.4.4 Operating System Functions

The FTPP operating system consists of both asynchronous and synchronous services. The

asynchronous services are interrupt driven tasks which include a facility to empty the input

FIFOs.

The synchronous services are invoked by the scheduler. The operating system functions

include a time function, the front end processor host (FEP),the fault detection and

identification function, and the reconfiguration function. Application programs are invoked

synchronously concordant with the other operating system functions.

21



1.4.4.1 Scheduler

The current version of the operating system is a real time system utilizing some of the

features of the Versatile Real Time Executive (VRTX) operating system of Hunter &

Ready, Inc. VRTX provides the primitives for task suspension, task resumption, and the

associated stack manipulations.

The core of the operating system is a non-preemptive scheduler which invokes the other

operating system functions and application tasks in a round robin fashion. Tasks (also

called services) are scheduled for execution once each scheduling loop or upon receipt of a

message for that service; the selection of the scheduling mechanism is determined by the

task designer.

Tasks may communicate either via global variables shared with processes in the same VID

or via messages to processes executing in other VIDs. Since the sche_iuler is non-

preemptive, suspension of the task is the responsibility of the task itself. Task developers

must be judicious in relinquishing control of the processor to prevent starvation of the other

tasks.

The fixed time frame typical in real-time systems has been relaxed for the C1 prototype.

This departure from normal real-me system implementations results from the requirement

to preserve the functional synchronization concept which rextuires that message streams

across all members of a VID be consistent. The transmission of messages from tasks

which are executed using time based preemption on non-clock deterministic processors

could violate this constraint and result in the transmission of interleaved messages from

varioustasks. "

1.4.4.2 Message Handling

Messages arcdefinedbytheapplicationtaskbut areaddressedtoa VIE) and a serviceusing

the user selected message class. The class of the message is defined by the task to be either

a normal message (that is, class 1) or an explicit class 2 message. In the event that the

redundancy of the source VID is simplex, normal messages arc translated to a class 2

message by the operating system thereby concealing the underlying redundancy level of the

task.

22



Conveyanceof a messageis initiated by a snd_msg primitive. The operating system

divides this message into packets, computes and appends a checksum to the message, and

transmits the individual packets via the output FIFOs. The snd_msg function is a blocking

invocation which transmits the message immediately.

As indicated earlier, the processing of incoming packets is handled both asynchronously by

an interrupt-driven process and synchronously by the scooping mechanisms. In either case

the input FIFOs are polled to determine the presence of a packet. Received packets are

deposited in a receive packet queue and relevant information regarding the status of the

message under construction is saved in the data structures associated with each source VID.

Header information regarding the message length is retrieved and subsequent packets are

linked in the receive packet queue to complete the task's message.

Completed messages can be read by a task only after a subsequent message has been

identified as either a scoop message or a class 0 message at which time a message is

stamped as readable. When a message has been stamped and when an inquiring service

requests retrieval via the get_msg, the message is reconstructed from the receive packet

queue into a contiguous byte stream. The get_msg function is non-blocking and returns the

message and a boolean value indicating whether a message is available.

1.4.4.3 Time Keeper

In order to create a uniform clock available to all VIDs within the system, a time keeper

function was devised. One virtual group in the system is responsible for the function of

reading its local processor clock and broadcasting a consistent, successively increasing time

to each VID. In the event that the time keeper is redundant, each member of this VID reads

its local clock, exchariges these values with each other using class 2 messages and

performs a mean value select to compute the system time which is then broadcast.

l.,t. 4.4 Front End Processor Host

In addition to other Operating System (OS) functions, one simplex VID has the static role

of being the designer's window into the system. The Front End Processor Host (FEP

Host) is an OS function which interfaces to a Macintosh computer. The FEP host accepts

23



messages from the operator via the Macintosh front end, composes messages and transmits

these messages to the appropriate VII). Likewise, VIDs may send information to the FEP

host for display purposes on the Macintosh.

1.4.4.5 Fault Detection and Identification

One of the cornerstones of the FTPP is its ability to withstand faults. However, to keep the

system fully operational faults must be detected and removed as soon as possible.

Therefore, the fault detection and identification function (FDD operates periodically to

monitor fault detection mechanisms. Faults which have occurred are remedied in a timely

manner to prevent possible system failure.

The major fault detection mechanism is the syndrome information generated by the network

elements and appended to each packet transmitted through thenetwork dement core. These

three bytes of error information are indicative of faults in either the processir/g elements or

network elements. Since the syndrome information is appended to the packet prior to

delivery, the FDI function on the recipient VID monitors the fault mechanisms.

The syndrome information is extracted from each packet and buffered as each packet is

scooped. Logging the syndromes in this manner preserves the functional synchronization

among members of a VID ensuring that the syndrome buffering is consistent. This

buffered syndrome information represents the perspective of each member of the VID

which is probably different than that data possessed by the other members of the VID.

Furthermore, in the case of a Byzantine failure, the other members would have dissimilar

information. The members of a VII) performing the diagnosis may diagnose different

components or may differ in their opinions as to whether a fault even exists. For these

reasons, the members of a redundant VID exchange an error vector indicative of whether an

error exists. This is accomplished by an exchange of these error vectors via class 2

messages. After this exchange each member of the VID wiLl have a consistent set of error

vectors -- one for each member. Subsequently, the VID analyzes the vectors to determine

if an error has occurred. In the event that one has occurred, the syndrome exchange phase

is invoked to disseminate the detailed diagnosis information. Similarly, a series of class 2

messages are created to exchange detailed syndrome information. When this data has been

disseminated, the diagnosis phase is entered. --

24



The repertoire of diagnosable faults is currently limited to those with strong signatures. :

Not only must all members of the diagnosing VID detect the error but each member of the

diagnosing VID must also target a specific component as faulty. The faulty component is

identified using the class of the message as well as the system configuration table (in the

event of a processing element fault) to target the specific hardware component. Table 1

defines the repertoire of diagnosable faults; the mechanisms are indicated.

Processor FMG member vote I

NE vote 2

NE synchronization

Table 1 - Diagnosable components

Diagnosis of a faulty component may occur by any virtual group, even the faulty VID

itself, since a VII) is theoretically guaranteed to operate correctly even in the presence of a

fault. However, precautions exist to ensure the nonpartieipation of the faulty processor in

both the error vector and syndrome exchanges.

When a component is diagnosed, a message is broadcast to the reconfiguration service on

all VIDs. This permits all sites to be cognizant of the fault and to modify status information

to prevent subsequent diagnoses. A processor fault diagnosis will initiate a reconfiguration

strategy designed to replace the faulty processor. On the other hand, in the C 1 prototype

FTPP a network element cannot be replaced; instead syndrome errors emanating from a

diagnosed NE are masked, concealing possible faulty processors resident on that NE as

well.

- . . .

1.4.4.6 Reconfiguration

The reconfiguration task performs various functions associated with the creation and

dissolution of VIDs of the required redundancy level Two reconfiguration strategies exist

to satisfy different operational requirements. These alternatives are a total reconfiguration

and a processor replacement reconfiguration. The total reconfiguration strategy establishes

a system configuration with VIDs of the specified redundancy levels. It attempts to satisfy

the request by creating redundant groups from simplex processors or by disbanding

25



redundant groups to satisfy the need for the specified number of simplexes. This strategy

is currently initiated by an operator command from the Macintosh front end processor

requesting specific numbers of simplexes, duplexes, triplexes and quadruplexes. This

strategy could also be invoked automatically during a mission sequence requiring a

modification in the redundancy levels for various tasks. Alternatively, the processor

replacement strategy is invoked upon receipt of a mconfiguration request triggered by the

diagnosis of a faulty processor.

In general,eachrcconfigurationstrategyperforms thesame generalsequence of operations:

!. Contend for reconfiguration authority

2. Virtual group selection

3. Global notification

4. Configuration tableupdates

5. Synchronization of virtual group

6. Reconfiguration termination.

The reconfigurationauthority(RA) is a singleVID which directsthe re.configuration

operationsof decidingwhich VIDs shallbe recomqgured, of decidingwhich VII) shallbe

thesystem timekeeper,ofinitiatingthereconfigurationmessage sequence and of accepting

acknowledgements. The selectionof theRA isimplemented by a contentionalgorithmin

which VIDs satisfyingcertaincriteriabroadcasta "contend forRA" message. The source

VID of thefirstbroadcastmessage receivedbecomes theRA; subsequent "contend of RA"

messages receivedarcdiscarded.

The RA selects.thoseVIDs to be rcconfigurcd; thisis highly dependent upon the

reconfigurationstrategyinvoked. In the case of totalreconfiguration,theRA studiesthe

cun'cntsystem configuration,the requested configuration,and chartsa plan of attack

consistingof creatingordisbanding VIDs where necessary.For a processorreplacement,

the RA merely searches for a simplex VII) which residesin a faultcontainment region

differentfrom the other non-faultymembers of the compromised VII). If there isno

candidate simpl...x, a message is broadcast to FDI indicating that the VID is unrepairable.

The selection of VIDs to be rcconfigured is succeeded by a broadcast global notification

message indicating those VIDs chosen. AU VIDs must acknowledge this message; in

effect, conf'trming that they wiU not send any messages to those VIDs undergoing

26



reconfiguration. This precaution is necessary to avoid the transmission of a message :

addressed to a VID which may disappear or which may alter its VID/physical hardware

mapping. Broadcast messages may still occur during reconfiguration without any

restriction. The RA may send messages addressed to those VIDs except during the

configuration table update phase.

A well ordered series of configuration update messages are broadcast by the RA to modify

the mapping of VID to physical NENIFO. This process activates the new virtual groups

causing them to enter their synchronization phase. The processor replacement strategy is

constrained to maintain the identity of the diagnosed VID.

AVID Undergoing reconfiguration synchronizes its members by scooping a special

message transmitted to itself. Upon receipt of this message all members operating in

unison send an acknowledgement to the RA indicating their successful synchronization.

The total reconfiguration strategy creates virtual groups which execute from an initial state;

all tasks which had been executing prior to the reconfiguration are terminated and new tasks

are created when this new VID is born. Furthermore, since any unread messages were

addressed to the "old" VID, the packet queues are flushed. The processor replacement

strategy reconfigures 2 VIDs -- a fault masking group in which a member is replaced and a

faulty simplex VII). The fault masking group resumes in an aligned state; the alignment

process copies the memory image from a non-faulty member to the new member so that

once the alignment process completes tasks may continue to operate with minimal

disruption. Unlike the total reconfiguration strategy, this reconfigured VII) is not

reinitialized by killing tasks and subsequently recreating them as a "new" VID. Likewise,

the packet queues are not flushed; the "new" member of the ViD receives a copy of the

packet queues by .virtue of the alignment process. The faulty simplex resumes in an initial

state as in the total reconfiguration strategy. As indicated previously, this simplex would

normally enter a diagnostic phase to determine its health; however, this is still

unimplemented.

Until the RA receives the acknowledgement from the newly formed VIDs, the system is

still in an interim state. All other VIDs are unable to eommunieate_direcfly with those

reconfigured VIDs. However upon receipt of the acknowledgements, the RA lifts this

restriction by broadcasting a re.configuration termination message.

27



• I
• v

Io

28
k i_¸_L i



2.0 The AF-FTPP Modifications and Utilities

To permit the execution of the Activation Framework on multiple processors of the vrPP,

an interface between the AF and the FTPP had to be designed, and the AF, AFOs, and

FTPP Operating System had to be modified. This AF-FTPP Interface was developed to

allow the integration of the Ada based AF and AFOs with the C based FTPP Operating

System. The AF and AFOs were modified to interact with this Interface and thus utilize the

FTPP Operating System primitives. Further, the FTPP Operating System was augmented

to support the AF methodology and the AF-FTPP Interface. In addition, to allow the

execution of applications other than the Event Diagnosis Expert, the Rules to Evidence

How Graph (EFG) and EFG to Activation Framework Object translators were modified

permitting the parsing and interpretation of more general rule sets.

A set of utilities was also developed during the KRAPP project. They were created to ease

the evaluation of the parallelized AF and to minimize the cost of the integration. First, a

load balancer was designed and implemented. This procedure parses the AF frame file and

determines a sub-optimal AFO to VID mapping. Additionally, an automatic load module

generator was implemented. This facility uses the load balancer and a set of code

generators to create FTPP load modules. Further, to enable message transmission and

reception from a remote some, a data insertion and capture facility was designed. Finally,

a conversion program (from "VOX" object module format to UNIX System 5 "a.out"

format) was written to enable the development of an Ada - C mixed system while utilizing

CSDL's currently available resources.

The following sections detail the design and implementation" of the aforementioned

modifications and.utilities.

2.1 The Rules to EFG and EFG to AFOs Translators

A suite of AFOs is generated from a set of Horn clauses, or rules, that represent the

knowledge of an intelligent system. To create the AFOs, the Horn clauses must be parsed,

interpreted, and :ranslated. This procedure is completed in two independent steps. First,

the Horn clauses are converted to an Evidence Flow Graph (EFG), which is an

intermediate set of data structures that characterizes the clauses. Second, the EFG is

29
PR_CEDiNG PAQE BLANK NOT FILMED



Horn Clauses

i Rules to EFG ITranslator

.
Evidence Flow Graph

!

EFG to AFOs I
Translator I

Frame File

I I ,
AFO Compilation: F
AF Initialization Fil
AF Start File
Priming Function F

Figure 16 - The Rules to AFOs Translators

translated into AFOs. These two translators are shown in Hgure 16. They were designed

and implemented in Ada by Worcester Polytechnic Institute under the Knowledge

Representation into Ada Methodologies project (KRAM).

The translators developed by WPI had a Umitadon; the EFG and AFOs, that were

generated, were .tailored to the Event Diagnosis Expert application. For exampl e, the

names of Event Diagnosis AFOs were incorporated into the intelligence of the translators.

Furthermore, the cormecU.'vity of the application was known apriori and embedded into the

translators. AddidonaUy, assumptions were made concerning the data structures being

passed between the AFOs, and this information was incorporated into the translation logic.

An extension of Rules to EFC, and EFG to AFOs translators, such that they are capable of

interpreting.and processing a general application, was desirable. Accordingly, under the

KRAPP project, these translators were modified. Specifically,

30



T .

1. The .List Management System (LMS), which is the foundation of the

translators, was modified to permit its execution on a VAX 8650 using the

VAX Ada Development System. Certain Ada constructs, which are not

supported by the VAX, are used by LMS. Subsequently, these constructs

were replaced.

2. The syntax of the Horn clauses was extended to allow the specification of

multiple input and output ports. The translators were modified to interpret

this enhanced syntax and automatically generate the corresponding

connectivity. This extension enabled the translation (Rules to AFOs) of

general purpose applications.

3. The assumptions concerning the data structures passed between the AFOs

were relaxed. While still being limited to booleans and integers by the Rules

to EFG translator, the EFG to AFOs translator was enhanced to parse and

interpret generalized data types. As a result, ff the Rules to EFG translator is

modified to allow Generalized Object (GO) representation in the EFG, then

the GO data types would be maintained and passed to the AFOs by the EFG

to AFO translator.

4. The EFG to AFOs translator was modified to restructure the AFOs so that

theycould be executed on theFTPP.

In addition to the translators, WPI developed a preprocessor that uses the frame file to

create "support procedures" for the AF (shown in Figure 16). The frame file is generated

by the EFG to AFOs translator, and it characterizes the attributes of the AFO suite (e.g.,

names, number of inputs and outputs, connectivity, etc.). The AF preprocessor creates

threeAFOIAF interfacefrieswritteninAda and a command filet'0rcompiling and linking

the AFOs. Th¢.AFO/AF interfacefilesarc: (I) an Ada package thatcontrols the

initializationoftheAFOs (a[starr),(2)a procedurethatstartstheAF (itiscalledtheaLrun

procedure and isdiscus.scdin Section2.2),and (3)a procedure thatpermits selectionand

executionof theAFO priming conditions(execute).This preprocessorwas alsomodified

by the KRAPP project. These modificationswere performed to permit and case the

executionof theAFOs on theFTPP, thecompilationof theAFOs on a MicroVAX Wl, the

conversion and translationof the Ada objectmodules to Heurikon C object modules

(discussed"m Section2.5),and the creationofFTPP load modules.

The modifications made to the translators and preprocessor were tested using the Event

Diagnosis Expert. Specifically, the EFG and AFOs generated by CSDL were compared to

31



those created by WPI. Furthermore, the extensions incorporated into these procedures

were exercised and verified by developing a set of Horn clauses that represents a data flow

diagram for a Real Time controller. The translation process correctly generated a suite of

57 AFOs and the corresponding support flies.

2.2 The Interface between the Activation Framework and the FTPP
Operating System

The ActivationFramework was developed by WPI and is writtenin Ada. The FTPP

Operating System was designed by CSDL and implemented inC. To allow the execution

ofthe AF on theFTPP, an interfacebctwcen theAF and FTPP Operating Systcm had tobe

developed. This interface,whose additioncaused modificationsin both the AF and the

FTPP OperatingSystem, iscomposed of numerous C and Adaprocedurcs.

For clarity,the AF-FTPP Interfaceissegmented intofour sections:(I) sch'cduling,(2)

message transmission,(3)message reception,and (4)performance timing. These sections

aredepictedinFigures 17 through 20, and ineach figure,the work performed by WPI is

separatedfrom thatcompleted by CSDL. AlbeittheAF-FTPP sectionsareseparatedin this

discussion,theyarecloselyintertwined.

2.2.1 AFO Scheduling

As mentioned earlier,the AF-FTPP Interfacepermitsthe integrationof the AF and AFOs

with the FTPP Operating System. The scheduling component of this Interface is shown in

Figure 17, and it allows the FTPP Operating System to: (1) initialize the AF, (2) invoke the

AF scheduler to determine the next AFO to execute, and (3) execute the transfer function of

a designated AFO. Furthermore, if the FTPP's redundancy management (RM) processes

were incorporated into the AF-FTPP methodology, then the AF-FTPP scheduler would

also execute the RiM tasks.

With respect to Figure 17, the AF-FTPP scheduler is the process sched. To initialize the

AF, sched calls the procedure af run. As discussed in Section 2.1, the afrun procedure is

automatically-generated by the AF preprocessor, and its content reflects the AFOs involved

in the application. More specifically, it is a series of invocations, one set per AFO, which

32



WPI CSDL

FRAME_NODEI

..,,_j,_l" i ............._ 'NIT_VID

TRAN_- _ SCHED

,|i,111%1_%)_t1%_q h

AF_EXEC

AFO.AF P RIM Ei_..._

EXEC UTE'(AFO.I M _SK_LO0_

KEY:

call

update database

I I database

.................. "" ....... ('_i EXEC. AFO_SI_

Figure 17 - The AF-FTPP Interface for
Scheduling

constnlcts a database for the AFO suite. This database is called the Frame_Node, and it is

initialized using wPrs AFO..Init and Port_Cr procedures. The AFO..Init procedure is

responsible for allocating and initializing an AFO data structure whereas the Port_Cr

procedure creates-and initializes a port data object. These procedures were augmented by

CSDL to permit the use of multiple processors and to integrate the AF and FTPP

schedulers. Namely, the Init_VID and Init_SID functions were developed and

incorporated into the AFO_lnit procedure. The lnitViD function is used to return an

identifier that indicates the location of the AF43 (the VID on which it resides). Further, the

lnit_.SID function provides an identifier which is necessary to schedule the AFO (gives the

AFO's Service ID or SID). The Frame_Node database was also extended to allow the

recording of these VID and SID fields. Additionally, the Port_to_AFO function was

implemented and integrated with the Port_Cr procedure. It informs the AF-bTPP Interface

of the AFO/port assignments.

33



EachAFO andits associatedportsareinitialized on each VID of the FTPP, regardless of

the AFO to VID distribution. This is performed to case and optimize the inter-VID

communication. If the AFO initialization process was not the same on each VII), then,

when communicating to a remote AFO, the name of the destination port would have to be

encoded into the message (the port name is 60 bytes long). Nevertheless, since the

initialization process is identical on all of the VIDs, the AFO and port identifiers are global

variables. As a result, only the destination identifier is required in the message (port ID is

merely 4 bytes long), and thus the overhead due to the communication process is

minimized.

After the AF is initialized, the "external input AFOs" are primed by the AF_Exec task

(AF_Exec is invoked from the af_run procedure). This function of initially priming the

"external input AFOs" has been simulated by a hand-coded Ada procedure (input afo)

which sends messages to these external input AFOs. These AFOs distribute the data that is

inserted into the application. For the Event Diagnosis Expert (illustrated in Figure 14), the

external input AFOs are eq_mode_health, pilot_not_.busy, health, alad jtids. After one or

more of these AFOs have been primed, the execution of the Event Diagnosis Expert can

begin.

To determine the next (or first) AFO to execute, the sched process invokes the AF

scheduler which is called Tsk_Loop. This procedure locates the primed AFO with the

highest importance. To determine if an AFO is primed, the Tsk_Loop procedure checks

the AFO's AF_Primed field (this field is updated during message delivery and retrieval).

Further, to calculate an AFO's importance, the Tsk_Loop process calls the execute

procedure with the AFO's Importance field. When the primed AFO with the highest

importance is determined, the Tsk_Loop procedure updates the exec..afo_sid field to reflect

the AFO's identity .....

Sched uses the exec_afo_sid field to execute the corresponding AFO transfer function,

Trans, which is embedded in a VRTX task. When the Trans function completes, it calls

the FTPP primitive sus_lv2 to return control to the sched prc, cess. After sched is resumed,

the AF_Exec task performs a synchronization thereby scooping all incoming messages as it

removes the messages from the FTPP input queue. The AF_Exec process retrieves the

34



WPI

KEY:

call

.............. t_ update database

[ ] detebese

CSDL

.........,..,..._RETURN_PORT_TO_AFO

- P RETURN_PORT. TO .VlO

SNO REMOT_

/
FREE

Figure 18 . The AF-FTPP Interface for
Sending Messages

messages one at a time and delivers them to their destination AFOs. When the FTPP input

queue is empty, the Tsk..Loop procedure is called to determine the next AFO to execute.

This three step process (determine next AFO, schedule AFO, and deliver remote messages)

is repeated until the Event Diagnosis Expert completes.

2.2.2 AFO Message Transmission

The second major Component in the AF-FTPP Interface is responsible for message

transmission and is illustrated in Figure 18. The AF primitive Snd_Obj transfers a

specified object to a designated port of an AFO. The SndObj procedure determines the

location of the destination AFO by invoking the Return_Port._to_AFO function. This

function returns the AFO that owns the destination port, if that AFO is local to the VID.

Conversely, it returns -1, if the destination AFO resides on a remote VII). If the

destination AFO is on same VID as the AFO sending the message, then the AF procedure

AFDeliver is invoked to complete the communication. Alternatively, if the destination

35



AFO resides on a remote VID, then the AF-FTPP Interface procedures

Return Port to VID and Snd Remote are called to perform the message transfer. The

Return Port to VID function indicates the VID on which the destination port resides. The
u w

Snd_Remote procedure converts the message from the AF format to the FTPP format and

sends it to the destination VII) using the FTPP Operating System primitive snd_msg.

Subsequendy, the local memory used by the AF message is deallocated using the Free

procedure.

2.2.3 AFO Message Reception

The AF-FTPP component responsible for receiving messages from AFOs on remote VIDs

is depicted in Figure 19. As mentioned earlier, the sched process executes the AF_Exec

task to deliver remote messages to the local AFOs. When scheduled, the AF_Exec process

calls the External_Input procedure. The External__Input procedure queries the VID's input

queue to locate a message. If a message exists, then the memory necessary, to store it is

allocated (via the Malloc and Sbrk functions), and the message is converted from the FTPP

format to the AF format. The message is then delivered to the appropriate port of the

destination AFO using the AF primitive AFDeliver. Furthermore, during the delivery

process, the execute procedure is invoked to determine if this new message causes the

destination AFO to be primed.

2.2.4 Performance Timing

The final component of the AF-FTPP Interface is a timing utility, and it is shown in Figure

20. Currendy, the only method at CSDL to integrate the AF with the FTPP Operating

System requires four compilers, two object module translations, and four loosely

connected computers (discussed in detail in Section 3). Consequently, because of the

configuration control and continual code modifications that are necessary, the recording of

performance measurements using discrete digital outputs and an oscilloscope, while very

accurate, is extremely tedious. To facilitate the measurement process, a timing procedure

using the local PE clock was developed. This process is non-intrusive, and it permits the

measurement of multiple functions at once. This timing mechanism uses two procedures:

one to start .the recording process and another to stop it.

36



WPI

EXECUTE(AFO.AF PRIMED)

\
AF_DELIVER_

KEY:

-'- call

................ ,- update database

[ ] database

CSDL

AF_EXEC

EXTERNAL_INPU _.

MALLO_

SBRK

from NE

Figure 19 - The AF-FTPP Interface for-
Receiving Messages

WPl

ACTIVATION
• "FRAMEWORK

. . . .

KEY:

call

I_ update database

l I ditabase

CSDL

AF.FTPP SUPPORT
PROCEDURES

" Figure 20 - The AF-FTPP Interface for Timing

37



The start procedure:

.

3.

Accepts an input parameter to associate the reading with a position in the

code.

Reads the time which is maintained by the PE.

Records the time in an array entry, whose position is indicated by the input

parameter.

The stop procedure:

I. Accepts an input parameter to correlate the stop time with the start time.

2. Reads the time.

3. Subtracts the start time from the stop time to calculate the elapsed time.

4. Determines the number of invocations of the start and stop procedures that

were performed in this interval, inclusive.

5. Compensates for the timing intrusion by using (4) to adjust the elapsed time.

6. Keeps a cumulative record of the number of timing calls (made with this input

parameter) and the elapsed time.

By using this process, any set of independent or nested procedures can be measured at

once. Further, the development of this process permitted CSDL to embed the measurement

facility in the AF and AFOs. Accordingly, a comprehensive set of performance

measurements can be recorded for each execution of the Event Diagnosis Expert without

modifying any of the software.

A complete set of.process description for the AF-FTPP Interface is presented in Appendix

A. Each diagram provides the process' inputs, its outputs, and a functional description.

2.3 The Modification of the Activation Framework

The Activatmn Framework was designed to execute on a personal computer (PC) using an

Ada development system. Accordingly, WPI developed several utilities to enable the AF to

operate in a "stand alone" fashion. For example, WPI implemented a scheduler in

assembly language to allow the AFOs to be executed on a priority basis. This stand alone

Ada AF was given to CSDL to be used for the KRAPP project.

38



The AF was modified topermititsexecutionon the F'TPP. The executionof theAF on the

FTPP isa more complicated process than on a PC, primarilybecause the AF must be

integratedwith the FTPP Operating System. For instance,theAF had to be modified to

utilize the FTPP scheduler rather than the WPI scheduler. Furthermore, the procedures that

supported the AF's stand alone operation had to be removed. In addition, since the Ada

compilers used by WPI and CSDL were different, the Ada structures that the CSDL

compiler does not support had to be replaced. The dynamic memory allocation schemes

used by WPI and CSDL also differed, and consequently, further modifications were

necessary.

A detailed listing of the modifications and additions made to the AF are presented in

Appendix B.

2.4 The Modification of the Activation Framework Objects

.

Unlike the AF, the modifications required to allow the execution of the AFOs on the FTPP

were few and minor. These modifications were necessary to ensure correct scheduling

control flow and to send output messages to the FTPP Operating System. The adjustments

performed by CSDL were:

1. A call to the FTPP primitive sus_Iv2 was added to each AFO transfer function

to allow the embedding of the function in a VRTX task.

2. The transfer function of each AFO was embedded in an endless loop. This

was required to permit multiple invocations of the tr_sfer functions.

3. The System_Output AFO was modified to call the AF-FTPP Interface

procedure print_system_output. Accordingly, the output messages sent by

the System_Output AFO could be printed by the FTPP Operating System.

Each modification to the AFOs was completed via the translators. That is, the translators

were adapted to generate AFOs with the desired change.

39



2.5 The "VOX" to "a.0ut" Translator

As previously mentioned, AF is written in Ada and the FTPP Operating System is written

in C. The KRAPP project used a VMS based Verdix Ada Development System to compile

the AF, a UNIX based Heurikon C System to compile the FTPP procedures, and the

Heurikon System to link the resultant object modules. Because the object modules

generated by the Verdix System differed from those created by the Heurikon, a conversion

process was required and consequently was developed by CSDL.

This conversion process involves three basic steps: (1) converting the Verdix object module

format to an intermediate format, (2) transferring these intermediate modules to the

Heurikon System, and (3) converting the intermediate object modules to the Heurikon

"a.out" modules. The use of an intermediate file format was required to permit the transfer

of the files over an Ethernet connection. Step 1 of the process is performed on a MicroVax

11I Workstation which hosts the Verdix Ada System, while Step 3 is performed on the

Heurikon System.

2.6 The Load Balancer

The optimal mapping of a suite of AFOs to a number of VIDs is a complex time consuming

process. Under the KRAPP contract, we developed a sub-optimal load balancer. It was

written in C on a Sun Workstation with a UNIX Operating System.

The load balancer determines the AFO to VID mapping by minimizing the inter-VID

connectivity. The connectivity was selected as the sole basis of distribution, because it

could be extracted from the frame file and the initial development of the load balancer was

concerned more with functionality than comprehensiveness.

As illustrated in Figure 21, the input to the load balancer is the fi-ame file and the number of

VIDs. The balancer parses the frame file, determines the number of AFOs, and generates a

conne_,tivity matrix. The basis of the mapping algorithm is an "assign and evaluate"

process. That is, an arbitrary AFO to VID distribution scheme is selected, and the inter-

VID connectivity is calculated. The distribution is then changed, and the connectivity is

recalculated. This distribution-calculation process is continued for a pre-specified number

of iterations. Finally, the mapping that minimizes the connectivity is chosen.

40



Figure 21- The Load Balancer

The output of the load balancer is four files: a verbose configuration listing, a terse file that

depicts the AFO to VID mapping, a file for decoding the intermediate AFO object modules,

and a listing of the AFOs that is used to create a Makefile. The configuration Listing, called

con fig.test, is a readable ASCII t-de specifying the number of VIDs, AFO's transfer

function, relative.AFO number, and AFO to VID assignment. The second file, named

global.afos, is a concise record of the AFO to VID distribution. The latter file is used by

the Automatic Load Module Generator to cream an FTPP load module.

To ease the third step of the object module conversion process (discussed in Section 2.5),

the load balancer generates a UNIX shell script which is the third output file. This script

file, called ud_afos, is used to convert the intermediate object module fo,'mat to the a.out

format. This program invokes the conversion program for each AFO object module, thus

permitting the user to automatically decode the modules ratherthanperform the process by

hand. Similarly, the fourth file, named a.fosfor..make, is created by the load balancer to

41



facilitate the creation of the Makeffle (the Make file utility is discussed in more detail in

Section 2.7).

2.7 The Automatic Load Module Generator

It was desirable to develop a method for automatically generating FTPP load modules,

because such a procedure: (1) can be used in conjunction with the load balancer, (2)

reduces the probabilityof mistakes,and (3) provides a friendlieruser interface.An

Automatic Load Module Generator (ALMG) was writteninC. Because of the lackof a

unified development system, itconsists of two stages,one that resides on a Sun

Workstation and the other on the Hcurikon System. (Note:thisistemporary, resolvable

inconvicncethatresultedbecause theKRAPP projcctdid not have an Ada compiler forthe

Sun Workstation;itisnot an unavoidable,major drawback oftheKRAPP project.)

The FTPP OperatingSystem iscomposed ofmany C modules. To recordtheinter-module

dependencies and facilitatethe linkingprocess,the UNIX MakeRle utilityisused. An

FTPP programmer uses the Makefile utilityto automaticallycompile C procedures into

objectmodules and linkobjectcode intoan FTPP load module. Because of the usefulness

of thisfacility,itisa major partof theAutomatic Load Module Generator.

Another significant portion of the ALMG is performed by three code generators (illustrated

in Figures 22 and 23):

.

,

.

The appsex.h code generator uses the global.afos fde, which is generated by

the.load balancer, to create a file that specifies the AFOs that are in the

application. Only one app..sex.h file is required per application.

The Iv2_init.c code generator uses the gIobal.afos file to create a function

which, when executed, associates the AFO transfer procedures with VRTX

tasks. One Iv2..init.c function is generated per application.

The afo_tovid.c code generator uses the global._fos f-tie to cream a procedure

that indicates the AFO to VID mapping. One afo_to_vid.c procedm'e is

generated per test.

42



Input

App Sex.h ICode Generator

Output

I
FTle

Figure 22 - The App_Sex.h Code Generator

_::i !:iiil Distribution: _iil+_
iii

Input

AFO to VIDCode Generator

Input

Code Generator

Output

[i iii! _i_!_!i!_Iii!iiliiiiiiii_ii!iiii_i_!i_iii!_iiiiiiiiiiiiiiii!ii!

Output

Iiiii_i_iii_i_!ili_ii_!i_!i!_'i_!_i_i_!_i_i_i_i_¸¸¸_¸_¸_¸'¸/ilii!i!i !!
Figure 23 - The AFO to VID.c and Lv2_Init.c

Code f]'enerators

43



Makefile 1Facility

"°,

Figure 24 - AF-FTPP Load Module
Generation

As stated earlier, the current implementation of the ALMG involves two steps. First, a

preprocessing stage, which resides on the Sun Workstation, is executed. This process

accepts a frame file and the number of VIDs as input parameters. Subsequendy, it invokes

the load balancer, the code generators, and then stores the output files in a temporary

directory. The second stage involves communication of the output files from the Sun

Workstation to the Heurikon System and the creation of an FTPP load module (only one

load module is required per tes0. After the files are stored on the Heurikon, the load

module is generated by invoking the Makefile utility (depicted in Figure 24) which links the

AF, AFOs, FTPP Operating System, and AF-FTPP Interface into one executable module.

44



Teat I

Figure 25 - The Test/Code Management
System

After the load module is created, it is downloaded to one or more VIDs. Subsequently, the

AF and AFOs are executed on the FTPP, and performance measurements are taken. The

metrics, along with AFO to VID configuration, can then be recorded using a test/code

management system. An example of such a system is shown in Figure 25.

2.8 Remote Data Insertion and Capture

A method of inserting and capturing messages is necessary for the execution of a real-time

complex intelligent system. The method suggested by CSDL utilizes a Sun Workstation as

a remote source/destination. In addition, this process uses a Motorola MVME 147 board

(30 Mhz. 68030 processor with 4 Mbytes of RAM) as a gateway controller. The gateway

software to support the data insertion and capture will reside on the Sun, the 147 board,

and a gateway VID.

45



The data insertion process involves severaJ steps. First, the source messages must be

placed in _i file on the Sun Workstation. Second, the gateway software, which resides on

the Sun, has to be downloaded to the 147 board. Third, the message file is u'ansferred to

the 147 board, and the gateway software is started. Last, the AF and the FTPP Operating

System are executed allowing t_e insertion of messages.

The data capture process also involves multiple stages. The messages, whose destination

is the Sun Workstation, are tagged, and sent to the gateway VID. The AF-FTPP Interface

on the gateway VID, when noticing that the messages are tagged for the Sun, sends them to

the 147 board. The gateway software on the 147 board stores the messages in a file.

When the run is complete, the message file is uploaded to the Sun for subsequent analysis.

The current design of the message insertion process uses a predefined location on a

gateway VII) to transfer the messages. The messages are sent one at a time,.and a simple

handshaking process is used to coordinate the communication. Specifically, the gateway

software on the 147 board checks the handshake flag and if it is reset_ sends a message and

sets the flag. The communication software on the VID polls the flag to detect the presence

of a message. If the flag is set, the input message is sent to the destination AFO, and then

the flag is reset.

The cur_nt design of the data capture procedure also involves a handshaking protocol.

The software on the gateway VID checks a handshake flag (a different flag than the one for

data insertion) and if it is reset, stores the outgoing message in a reserved memory location

on the VID and sets the flag. The 147 board poUs the flag and'when it is set, reads the

message. The 147 board then clears the flag, adds the message to the destination file, and

again queries the VID for another message.

The data insertiongateway software forthe Sun Workstation and the 147 board has been

designed,implemented, and debugged. The corresponding communication software for

the FTPP isdesigned but needs to be irnplementcck Further,the data capture gateway

softwarehas bccn designed,butithas not been written.

46



3.0 Developm/mt Environment

The aim of the development system is to create an FTPP load module which incorporates

the FTPP Operating System, the Activation Framework, the AF-FTPP Interface, and the

Activation Framework Objects which represent the application's rule set (that is, Horn

clauses). Because of the lack of a single development system which hosts all the software

tools necessary to accomplish this task, the creation of an FTPP load module requires the

use of four loosely coupled computer systems. Consequently, this overall task has been

divided into four phases closely corresponding to the four computer systems involved:

Phase

Translation to AFOs

Compilation of AFOs and AF

Load Balancing

Load Module Creation

Computer system

VAX 8650 ..

MicroVAX I/I

SUN 3 workstation

Heurikon UNIX

Figure 26 describes diagrammatically the sequence of operations spanning the various

computer systems.

Translation to AFOs

VAX 8650

1

Compilation of AFOs"

and AFO/AF interfacc

MicroVAX III

Load Balancing

SUN3

Load Module
Creation

YeurikonL_VIX

Figure 26 - Development System Overview

47



3.1 Translation to AFOs

The application is represented by a set of Horn clauses which describe inter-AFO

connectivity and data dependencies. The translation of these rules to AFOs is a two-phase

process which creates the AFOs and AFO/AF interface modules in the Ada programming

language. The two translators involved (Rules to EFG and EFG to AFOs referred to in

section 2.1) are writtenin Aria as well. These translators therefore must be compiled and

executed on a computer system which hosts an Ada compiler and runtime environment.

The VAX 8650 system was selected for this phase of development because of the

availability of the native VAX Aria Development System.

Rules to EFG

Translator

m SUN 3

VAX 8650

- _Wesents data Fries

-._pr_=m operations

Figure 27 - Translation to AFOs phase

48



3.2 Compilation of AFOs and AFO/AF Interface Modules

Since the AFOs and the AFO/AF interface modules are targeted for execution on the FTPP

(a 68020 based system), an Ada compiler is required which generates object modules

suitable for execution on a 68020 processor. However, due to the lack of a cross compiler

on the VAX 8650, these modules are wansferred to the MicroVAX M. This system has the

Verdix Aria Development System which is a cross-compiler targeting the 680x0 class of

processors. In addition, to automate the compilation process a command file is also

generated in parallel with the generation of the AFOs and AFO/AF interface files during the

"translation to AFOs" phase. This command file invokes the Aria compiler for each module

and converts the object module to an intermediate format. This format conversion serves

the dual purposes of effecting an efficient form for file transfer and of partially translating

the object module format from VOX format to UNIX System5. "a.out" format.

fromVAX 8650 Mlcro.VAX M

Filetransfer

iii_i_!_ni_ie!!ii_iii!ii__iii!iii?i!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiii:iiiii?_I

I

_-_--_[AFO Compilation

Iand fo_nat

conversion

I

:.:f6_i _i:-:::i::_i::iiii::i!!ii::.i_il::::iiliiii::iiii:-:.i:.i_::i::_i::i::ii::_ii:::::!i_:::I

to SUN3

- represents dam files

- _nts operations

Figure 28 - Compilation of AFOs and AFO/AF interface phase

49



3.3 Load Balancing

The load balancer has been implemented on the SUN 3 workstation in an effort to

eventually unify FTPP development. The frame file generated on the VAX 8650 system is

transferred to the SUN 3 for inclusion in the Automatic Load Module Generator (ALMG).

The ALMG generates three C source fries to allocate AFOs to VIDs, a command file for

decoding the intermediate Aria objects, and a makefile template for inclusion of the AFO

objects in the load module. These file are wansferred to the Heurikon UNIX system. The

SUN workstation also operates as the gateway for transferring the encoded AFOs and

AFO/AF interface object modules to the Heurikon UNIX system.

 mV X 50
)

r

AFOs;:_:ini_aliZat/on,i [

if_ii iiiiii_iiliii!!i_illiili_,i?_iliiiii:ilii_iiiiiiii

"x i"

Sun 3

to Heurikm UNIX

I JAutomatic
Module Generamr

Object conversion fiIe, _::_ [

_ -regrese,n_ dam files

[*_'] -_-_re,,_nL_operations

Figure 29 - Load Balancing phase

5O



3.4 Load Module Creation

The Heurikon UNIX C compiler and linker consolidate all the object files to generate an

executable load module for the FTPP. However, before actual invocation of the linker, the

AFOs and AFO/AF interface object modules must be decoded using the object conversion

command file, and the makef'de must incorporate the template to include the AFOs and

AFO/AF interface object modules in the load module. Execution of the UNIX makefile

facility compiles the C modules generated by the load balancer and links the AFOs,

AFO/AF interface modules, and the AF object modules with the FTPP operating system

object modules to generate the load module.

from SUN •

F'de _ransfe_

Heurikon UNIX

and Link

Figure 30 - Load Module Creation phase

- represents data files

- represents Olm'a_ions

51



• I

52



4.0 Performance Measurements :

The execution of the Event Diagnosis Expert on the FTPP was evaluated for several

reasons. First, performance measurements were recorded to determine the speedup that

can be attained by utilizing multiple processors. Second, they were taken to identify

improvements that will enable more efficient execution of the Activation Framework.

Third, performance metrics were used to examine the effect that different load allocations

schemes had on the execution of the application. Last, they were employed to determine

the effect of different AFO computational loads.

In addition to examining the performance of the Event Diagnosis Expert, we used the AF

Methodology and AF-FTPP utilities to execute a data flow structure for a Real Time

Controller. Similar to the Event Diagnosis Expert application, the AF implementation of

this Controller generates an AFO for each Horn clause. However, the Controller

application requires 57 AFOs rather than the mere thirteen AFOs needed by tl3e Expert. As

a result, the FTPP is stressed more executing the Real Time Controller AFOs than it is

hosting the Event Diagnosis Expert.

4.1 Preliminary Performance Measurements

It was desirable to dissect the AF to discover where the bulk of the processing time was

being spent. To accomplish this preliminary task, we used the Network Element Simulator

(NESIM) and one to three PEs to measure numerous intervals within the AF, AFOs, and

AF-FTPP Interface. '"

The preliminary performance measurements of the AF and AFOs recorded 38 procedures.

The intervals that were examined varied from the low level malloc routine (which performs

memory allocation) to the total Event Diagnosis Expert's execution time. A sample set of

the measurements that were recorded is given in Table 2. For each measurement, four

items were obtained: the interval identifier, the number of invocations, the average time

required to execute the interval, and the cumulat;ve time (the number of invocations

multiplied b.y the average time per invocation). The interval ID was retained to coordinate

the measurement with the procedure being timed. The number of invocations was recorded

53 PRECEDING PAGE BLANK NOT FILMED



Procedure _ T'mleJCall Total Time

2 malloc 142 0.7 96

12 tsk loop 20 222 4437
14 afo_init 14 5.7 80
16 port cr 26 12 311
18 snd_obj 33 6.3 208
38 total execution time 1 7383 7383

Table 2 - Example of Preliminary Measurements

to determine the routines that are called most frequently. ::Additionally, the time per

invocation and cumulative time were measured to quantify the performance and to identify

the bottlenecks.

The measurements taken during this evaluation differed from those obtained exercising the

actual FTPP hardware (the latter measurements are presented in Section 4.3). These

differences resulted primarily because this analysis used the NESIM. The NESIM

supports the inter-VlD communication via a software program executing under Unix

whereas the F'IPP uses dedicated hardware. Because the execution of the NESIM program

is time sliced by Unix, the inter-VID communication overhead due to the NESIM is

significantly larger than that required by the FTPP. Consequently, the time required to

execute AF-FTPP processes that involve inter-VID communication was substantially larger

using the NESIMthan utilizing the FTPP hardware.

Another reason why the performance measurements recorded using the NESIM are

different than those measured employing the FTPP hardware is that in the former case, the

AF-FTPP Interface was logging debug information during its execution. When evaluating

the AF using the hardware, we recognized that this debug information was hindering the

system's performance. Consequently, this logging process was removed for all of the AF-

FTPP evaluations that employed the FTPP hardware. AS a result, the performance

measurements recorded utilizing the FTPP are substantially smaller than those taken using

the NESIM.

54



SincetheNESIM overheadis significantanddebuglogging wasperformedby theAF-

FTPP Interface, these times were, and should only be, used to determine where the bulk of

the execution time resides and to evaluate the performance gains attained by incorporating

enhancements (performance gains are discussed in Section 4.2). These preliminary

measurements are valid means for comparing the performance gains, because the inter-VID

communication overhead can be determined and subsequently, excluded.

As stated earlier, this analysis involved the NESIM and one to three PEs. It was performed

to determine which AF, AFO, and AF-FTPP Interface procedures could be improved. A

complete List of the resultant measurements is presented along with a description of the

procedures instrumented in Appendix C.

4.2 Enhancements in the AF and AFOs
"•%

The preliminary performance measurements were analyzed to determine where the majority

of the time is being spent. This initial examination addressed the main "bottlenecks" and

"time sinks" rather than comprehensively itemize the areas that need optimization.

Three major inefficiencies were identified during this evaluation:

1. The port aura procedure, which locates a port entry in the port table based on

the port name, was needlessly called during each execution of the AFO

priming and transfer functions.

2. The AFO priming function unnecessarily checks all of the input ports each

time it is called. If one port does not have a message, then the AFO is not

primed and the other ports do not have to be checked.

3. The AF spends a large portion of time determining the next AFO to execute.

Each inefficiency was examined, and a corresponding enhancement was designed and

implemented. Specifically,

.

. .

The EFG to AFO translator and AF preprocessor were modified to

incorporate AFO initialization procedures. During the AF startup process, an

initialization procedure is invoked for each AFO in the application. These

55



procedures use the port_hum function to determine the _ippropriate port

identifiers CIDs). These port IDs are recorded in variables that are visible to

the priming and transfer functions. Since the port ID assignments are

performed during the initialization process rather than during the steady-state

execution of the AF, the time required to execute the priming and transfer

functions is substantially reduced.

2. The EFG to AFO translator was modified to use the Ada "and then" construct

in the priming conditions (for AFO priming functions involving multiple

conditions). As a result, the number of port checks is minimized.

3. The "polling" scheduler used in the AF was replaced with a message driven

scheduler. Consequently, the overhead required to determine the next AFO to

execute is greatly reduced.

The performance measurements of the enhanced AF and AFOs used the Network Element

Simulator and timed 40 procedures. In addition to the 38 intervals recorded in Section 4.1,

this analysis measured the AFO initialization time and the steady-state execution time (see

Section 4.3 for the boundaries for these intervals). As before, this examination involved

one, two, and three PEs. This analysis was performed to determine the performance gains

that were attained by incorporating the previous modifications.

As discussed in Section 4.1, the communication overhead due to the NESIM is significant.

Nevertheless, these measurements can be used to approximate the performance gains

attained by incorporating our enhancements, because this overhead was determined and

extracted. Conscquendy, after the AF was optimized, its performance increased by 258,

293, and 209 percent for one, two, and three PEs, respectively (illustrated in Figure 31).

Like the preliminary measurements in Section 4.1, a complete List of the measurements

recorded during this analysis is presented in Appendix C.

56



Time

{ms)

6OOO

5OO0

4OOO

30O0

2OOO

1000

0

CO
O_

04

1 2 3

Number of Processors

• Unenhanced AF

[] Enhanced AF

Figure 31 - Execution Times Required by the AF Versions

4.3 Performance of the Event Diagnosis Expert

The Event Diagnosis Expert was executed on one to thirteen simplex VIDs. Three times

were recorded, specifically: (1) the time necessary to initialize the Ada AF, AFOs, and AF-

FTPP Interface, (2) the time from the completion of the irtitializafion process to the end of

the AFOs execution, and (3) the total time required to execute the Event Diagnosis Expert.

The first timing essentially measures the overhead required to create the AFOs (the q_run

procedure) and to send the necessary set of initialization messages. The second timing

starts when the scheduler fast checks for a primed AFO and concludes when the

System Output AFO has successfully processed its last message. This interval is referred

to as the steady-state time. Finally, the third measurement is the sum of(l) and (2).

57



Number of VIDs 111i.tigiigglig.ll_ $_ady-Smte(ms) Total Execution(ms)

1 775 553 1328

2 766 374 1140

3 766 299 1065

4 766 261 1027 "-

5 654 273 927

6 654 252 -. 906

7 750 224 974

8 766 213 979

9 654 241 895

10 702 233 935

11 638 241 879

12 638 256 . 894

13 718 218 936

Table 3 - Performance of the Event Diagnosis Expert Utilizing the Load

Balancer -

The performance metrics obtained during this analysis are presented in Table 3. The AFO

to VID mapping for this test was generated using the load balancer. As stated earlier, the

load balancer determines the distribution by minimizing the inter-VID connectivity. By

examining Table 3, it can be seen that, as expected, the initialization times remain relatively

constant. These times fluctuate slightly, because the AFO to VID distributions differ and

the timing facility has a granularity of 16 milliseconds. Converseiy, the steady-state times

noticeably vary since the work is distributed to multiple processors. Further, these times

are not monotonic, because the load balancer typically generates a sub-optimal distribution.

For instance, the time required to execute the Event Diagnosis Expert increases when

shifting from four to five VIDs. This occurs because the load balancefs distribution for

four VIDs is better than that for five VIDs.

The speedup attained by distributing the workload is presented in Table 4. These numbers

represent the speedup of the steady-state execution time. The AF initialization time was

ignored in the speedup calculation, because the steady-state time will typically dominate the

execution time in a real application (the initialization process is only performed once

58



Relative Speedup

1 1

2 1.48

3 1.85

4 2.12

5 2.03

6 2.19

7 2.47

8 2.60

9 2.29

10 2.37

11 2.29

12 2.16

13 2.56

Table 4 . Steady-State Speedup for the Event Diagnosis Expert

whereas the Event Diagnosis Expert AFOs will be executed many times over the course of

a mission). It can be seen in Table 4 that the maximum speedup achieved is 2.60. This

speedup results when the load of the system is allocated to 8 VIDs.

The speedup of the Event Diagnosis Expert is graphed in Figure 32. Additionally, in

Figure 33, a monotonic logarithmic curve fit is superimposed over the speedup plot to

illustrate that the speedup curve approaches a plateau. The speedup eventually stabilizes,

because the application's synchronization dependencies counteract the additional

throughput capability.

In general, the speedup that was attained is relatively small. Nevertheless, such a speedup

was expected after considering the Event Diagnosis application. A minimal speedup was

speculated, because it is nearly impossible to achieve a s;gnifieant speedup when: an

application involves such a small number of tasks (13), the computational load of each task

is approximately equal to the time required to schedule a task, and one of the primary tasks

is a bottleneck (System_Output AFO).

59



3

Speed

Up

2

0 , , ' ' ! ' ' ' ' I I

0 5 10 15

Number of Processors

Figure 32 - Steady-State Speedup for the Event Diagnosis Expert

Speed

Up

3

2

r.

I

- : SpeedUp

0 . w _ I ' I I

0 5 10 15

Number of Processors

Figure 33 - Steady-State Speedup with Logarithmic Approximation

60



With respect to the distribution of an intelligent system, speedup is not _e only concern.

Another important issue is the effect that parallelization has on the output of the system.

This issue was examined when hosting the Event Diagnosis Expert on the FTPP. When

executed on a single processor, the Expert had a deterministic output. Alternatively, when

parallelized, the output became non-deterministic and typically varied with the number of

processors used. However, since output ordering constraints were not provided, each

output sequence was deemed correct.

4.4 Performance of the Event Diagnosis Expert with Simulated

Computational Load

As discussed earlier, the increase in the performance of the Event Diagnosis Expert that

was attained by employing multiple processors of the FTPP was unimpressive. We

speculated that this resultant speedup would be minimal, partly because the computational

load of each AFO is small. Accordingly, we attempted to verify its theory by giving each

AFO a uniform computational load.

The 68881 floating point multiplier on each PE was used to simulate an AFO computational

load. Specifically, each AFO, except the System_Output, was modified to execute a series

of floating point instructions prior to its execution. The number of instructions was varied

to differ the size of the load. A computational load was not added to the System_Output

AFO in an attempt to reduce its bottleneck effect (which is currently inherent to the

application). The load balancer was used to generate an AFO to VID distribution, and the

"loaded" Event Diagnosis Expert was executed on one to thirteen.PEs.

The AFOs were given uniform loads of 32 ms., 70 ms., and 150 ms. As speculated, the

resultant speedup of the Event Diagnosis Expert improved as the computational load of the

AFOs was increased. For example, when the Expert was allocated to ten VIDs, the

speedup was 2.37, 3.24, 4.03, and 4.91 for the 0 ms., 32 ms., 70 ms., and 150 ms. loads

respectively. A complete list of the resultant performance measurements is provided in

Tables 5 through 8. Further, a comparison of the speedup attained through distributing the

application is presented in Table 9 and illustrated in Figure 34.

61



l_itialization(ms) Steady-State(ms) To_ Execution(ms)

1 775 553 1328

2 766 374 1140

3 766 299 1065

4 766 261 1027

5 654 273 927

6 654 252 -. 906

7 750 224 974

8 766 213 979

9 654 241 895

10 702 233 935

11 638 241 879

12 638 256 .." 894

13 718 218 936

Table 5 - Performance of the Event Diagnosis Expert

Number of VIDs

1

2

3

4

5

6

7

8

9

10

11

12

13
o

S_adv-Sm_(ms) Tot,a/Execution(ms)

775 916 1691

750 534 1284

750 411 116I

766 337 1103

638 355 " 993

638 321 959

750 272 1022

750 275 1025

654 301 955

686 283 969

654 275 929

654 289 943

702 256 958

k

Table 6 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 32 ms.

62



Initialization(ms) S_adv-Smte(ms_ Totai Execufion(ms_

1 775 1401 2176

2 750 758 1508

3 750 603 1353

4 750 531 1281

5 654 487 1141

6 654 409 1063

7 766 371 1137

8 750 346 1096

9 654 376 1030

10 686 348 1034

11 654 361 1015

12 638 348 986

13 702 297 999

Table 7 . Performance of the Event Diagnosis Exper[
Additional Load per AFO = 70 ms.

NumberofVIDs _ Smadv-Smte(ms) Total Execufion(ms)

1 775 " 2377 3152

2 750 1174 1924

3 750 982 1732

4 750 862 1612

5 638 757 1395

6 638 604 1242

7 750 587 1337

8 766 506 1272

9 . 638 537 1175

10 702 484 1186

11 638 476 1114

12 638 481 1119

13 702 368 1070

Table 8 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 150 ms.

63



Number of VIDs Speedup Speedup
I .o.£axla.Iwad F.2 a.ZZ.n 

1 1 1

2 i.48 1.72

3 1.85 2.23

4 2.12 2.72

5 2.03 2.58

6 2.19 2.86

7 2.47 3.37

8 2.60 3.33

9 2.29 3.04

10 2.37 3.24

11 2.29 3.33

12 2.16 3.17

13 2.56 3.58

Speedup
F.xma..TO.zn 

1

1.85

2.32

2.64

2.88

3.43

3.78

4.05

3.73

4.03

3.88

4.03

4.72

Speedup
F.aza_12_0_an 

1

2.0

2.42

2.76

3.14

3.94

4.05

4.70

4.43

4.91

4.99

4.94

6.46

Table 9 - Steady-State Speedup for the Event Diagnosis Expert

Speed
Up

7

6

5

4

.3

2

0
0 5 10

Number of Processors

15

150 ms Load

70 ms Load

32 ms Load

No Load

Figure 34 - Speedup Comparison for Differing Loads

64



NumberofVIDs _ Smadv-Smte(m_

1 775 2377

2 750 1174

3 750 982

4 750 862

5 638 757

6 638 604

TotaJExecufion(ms)

3152

1924

1732

1612

1395

1242

Table I0 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 150 ms.

Distributed via Load Balancer

The results of this loading analysis implies that the performance of a parallelized AFO suite

will improve if each AFO represents multiple rules rather than only a single rule.

Accordingly, it is CSDL's belief that methods by which multiple rules can be grouped and

characterized using one AFO should be explored.

.
.

4.5 Performance of the Event Diagnosis Expert Using a Hand Generated

Distribution

As discussed in Section 2.6, the AFO to VID distribution generated by the load balancer is

sub-optimal. This implies that considerations other than connectivity should incorporated

into the load allocation algorithm. To support this speculation, a set of mappings were

constructed by hand utilizing knowledge of: (1) the connectivity, (2) the Event Diagnosis

Expert application, and (3) the implementation of the Activation'Framework. The Event

Diagnosis Expert was executed on one to six VIDs using these hand coded mappings.

The performance of the Event Diagnosis Expert, augmented to include a 150 ms. simulated

load and utilizing the load balancer, is shown in Table 10. The 150 ms. load was

arbitrarily selected for this illustration. The resultant execution times for this application

using the hand coded distribution is presented in Table 11, and a comparison of the steady-

state speedup is given in Table 12 and Figure 35. It can be seen that, regardless of the

number of VIDs, the performance of the Expert using the hand coded distributions is equal

to or better than that employing the automated mapping. In conclusion, this evaluation

implies that an AFO to processor allocation algorithm based solely minimizing the inter-

processortrafficwilltypicallygeneratea sub-optimaldistribution.

65

w



Initialization(ms) Steady-State(ms)

1 775 2377

2 750 1174

3 750 846

4 638 731

5 638 544

6 654 527

Total Executionfms)

3152

1924

1596

1369

1182

1181

Table 11 - Performance of the Event Diagnosis Expert

Additional Load per AFO = 150 ms.
Distributed via Hand Calculation

Number of VIDs Speedup Speedup
H_d Calculation

1 1 1

2 2.0 2.0

3 2.42 2.81

4 2.76 3.25

5 3.14 4.37

6 3.94 4.51

Table 12 . Load Balancer vs. Hand Calculation Speedup

Comparison

66



Speed

Up

n

- Load Bal. Distribution

• I " I ' I " I I ' i " I

0 1 2 3 4 5 6 7

Number of Processors
1

Figure 35 - Load Balancer vs. Hand Distribution
Speedup Comparison

4.6 Performance of the Event Diagnosis Expert Using the Dependency

Load Balancer

The automatic load balancing algorithm discussed until now is based on minimizing the

inter-VID connectivity. As concluded in Section 4.5, this method usually generates sub-

optimal AFO to VID allocation. In an attempt to improve.the automatic load distribution

mechanism, an allocation methodology founded on the AFO priming conditions was

designed. To distinguish between these two distribution algorithms in the following

discussion, this new mapping utility will be termed the "dependency load balancer",

whereas the distribution algorithm described in Section 2.6 will be referred to as "he

"connectivity load balancer".

67



health

_uneidq
_weypoif eel

health

h_leed_m
error

jtids

system
output

a_alphe J_wm_mi ao
check error des

Figure 36 - The Event Diagnosis Expert

One of the limitations of the connectivity load balancer is that it does not consider the AFO

priming conditions. Since an AFO's priming conditions must be fulfilled before it can be

executed, these prerequisites should be considered when determining an AFO to VID

allocation. To examine how useful the priming conditions axe for selecting an allocation

scheme, we developed the "dependency based" load balancer. This balancer derives its

AFO to VID mapping solely from the AFO priming conditions. To give an example of

how this method works, we consider the a_pilot_aware AFO of th'c Event Diagnosis Expert

(illustrated in Fi.gure 36"). This AFO's priming conditions require that, prior to it being

scheduled, it receive a message from the following AFOs: eq_rnode_health,

pilot_not_busy, and health. Accordingly, it can only execute after the latter AFOs have

completed. The dependency load balancer uses the AF frame file to determine the AFO

priming conditions, and then it establishes an AFO "execution order". An AFO execution

order is a chronological/dependency ordering that indicates which AFOs must execute

before other AFOs can be scheduled. This ordering is segmented into iterations (or steps),

and it allows the load balancer to calculate which AFOs can b¢ executed at a particular time

and which AFOs can be scheduled simultaneously.

68



An oudine of aforementioned algorithm is as follows: .,.

1) The frame f'de is parsed to determine the AFO interconnections.

2) A dependency matrix is constructed to depict the AFO priming conditions.

3) The "external input" AFOs (described in Section 2.2) are located and executed

during execution iteration #1.

4) Given that the external input AFOs have completed execution, the dependency

matrix is examined to determine the AFOs whose priming conditions have been

met. These AFOs are scheduled during execution iteration #2.

5) Given that the external input AFOs and the AFOs of step 4 have completed, the

dependency matrix is again parsed to determine the AFOs that can be executed.

These AFOs are f'ned during execution iteration #3.

6) Step 5 is performed until all of the AFOs have comple.ted execution. During each

repetition of this step, the AFOs that were executed are recorded. After all AFOs

have been fired, the execution order is known. The execution ord_ is designed

such that all AFOs in the same execution iteration are capable of being f'a'ed

simultaneously. -

7) Each iteration of the execution order is parsed, and all AFOs in that iteration are

allocated to different VIDs (if the required number of VIDs is available) to permit

their parallel execution.

8) Step 7 is repeated until all AFOs have been assigned of a VID.

To illustrate the algorithm, we examine the Event Diagnosis Expert. Using the dependency

algorithm, the following execution order is generated:

Iteration #1

Imration#2

Iteration #3

-. eq_rnode_health, pilot not busy, health, jtids can

be executed, because they are the external input AFOs.

- a previous_waypoint, a_unaided_sol, a_ecm_env,

apilot_aware, a_alpha_check, alead map..error,

awm_ngrp..error,a..eo radar des can be executed,

because their priming conditions have been fulfilled

by the execution of the external input AFOs.

- system_output can be executed, because its priming

conditions have been fulfdled by the execution of the

AFOs in Iteration #2.

69



Since theAFOs executed during the same iterationcan be executed in parallel,they are

allocatedtodifferentVIDs. For instance,given thatfourVIDs arcavailabletoexecute the

Event DiagnosisExpert,then thedependency load balanccrwould generatethefollowing

AFO to VID mapping:

VID 1 - eq mode health, a..previous_waypoint, a_alpha_check, system_output.

V1D 2 - pilot not busy, a..unaided_sol, a._lead_map._error.

VID 3 - health, a_ecmenv, a_wm_map_error.

VID 4 - jtids, apilot_aware, aeo_radar_des.

As a result of the allocation, each of the four VIDs is completely utilized (if the AFO loads

are assumed to be uniform). Specifically,

- eq_mode_health, pilot_not__busy, health, and jtids will be executed first and

simultaneously.

- a..previous_waypoint' a_unaided_sol, a_ecm env, a_pilot..aware will be executed

second and simultaneously.

. aalpha_check, a_lead_maperror,a_wm_map_error, and a_co_radar_des will be

executed third and simultaneously.

- system_out-put will be executed last.

The dependency load balancer was employed to generate AFO to VII) mappings for the

Event Diagnosis Expert for one to thirteen VIDs. Subsequendy, the resultant load modules

were executed and performance metrics were obtained. These results are presented in

Tables 13 and 14:. Further, they are illustrated in Figures 37 and 38.

A comparison of the speedup achieved using the connectivity load balancer with that

attained utilizing the dependency load balancer is illustrated in Table 15 and Figure 39. As

expected the performance of the dependency based algorithm was, in general, better than

that of the connectivity method. Accordingly, this analysis indicates that the AFO priming

conditions arc a more important facto- for determining the allocation scheme than the inter-

VID connectivity. Nevertheless, both allocations methodologies arc sub-optimal. As

depicted in Hgure 39, neither algorithm was consistendy better than other. As a result, it

appears that multiple factors should be considered when determining the AFO to VID

mapping.

70



" Initi_ization(ms) Steadv-Smte(ms) To_Execufion(m_

1 775 553 1328

2 763 305 1068

3 763 315 1078

4 748 227 975

5 766 277 1043

6 764 235 999

7 638 246 884

8 766 203 969

9 750 221 971

10 766 219 985

11 638 252 890

12 748 207 - 955

13 702 230 932

Table 13 - Performance of the Event Diagnosis Expert Utilizing the

D..g.ll.Cdl.d._,.fl_ Load Balancer

Number of VIDs Relative Speedup

l 1

2 1.81

3 1.76

4 2.4.4

5 2.0

6 2.35

7 2.25

8 2.72

9 2.50

10 2.53

11 2.19

12 2.67

13 2.40

Table 14 - Steady-State Speedup for the Event Diagnosis Expert
Distribution via l_9.g/ldg/l_ Load Balancer

71



Speed

Up

3

2

0 i • • m | "| • , _ • |

0 5 10 15

Number of Processors

Figure 37 - Steady State Speedup using the Dependency Load Balancer

o.

Speed
Up

3

2

0

•_ Speed Up

' = I ' ! I

0 5 10 15

Number of Processors

Figure 38 - Steady State Speedup with Logarithmic Approximation

72



Numbei" of VIDs Speedup Connectivity Speedup Dependency

1 1 1

2 1.48 1.81

3 1.85 1.76

4 2.12 2.44

5 2.03 2.0

6 2.19 2.35

7 2.47 2.25

8 2.60 2.72

9 2.29 2.50

10 2.37 2.53

11 2.29 2.19

12 2.16 2.67

13 2.56 2.40

Table 15 - Connectivity Load Balancer vs. Dependency Load Balancer
Speedup Comparison

73



2.5 m

Speed
Up

2.0 m

1.Ore

Mapping vie
Dependency Based
Load Belancer

I ! I I I i I I ;
1 2 3 4 5 6 7 8 9

Number of Processors

_Oependem:y Based Load 8s|em
Provided Botter AIIIocetion

Connectivity Based Load blanc
Provided Better AIIIocetlon

I I ! __!_I 1 I

10 11 12 13

Figure 39 - Connectivity Load Balancer vs. Dependency Load Balancer
Speedup Comparison

4.7 Distributing the Work Load of the System Output AFO

The previous analyses have incorporated several allocation schemes: an intuitive hand

generated mapping, an automated allocation based on minimizing inter-VII) connectivity,

and an automated distribution based on maximizing parallelism. However, in each method,

the computational load of the System Output AFO was allocated to only one VID

(centralized allocation of the Output AFO). The analysis conducted in this Section

examines the advantages of distributing the work load of this AFO.

74



VID #1

dell

Figure 40 - Centralized Distribution of the System Output AFO

An example of a centralized allocation of the System Output AFO is depicted in Figure 40.

The AFOs that comprise the Event Diagnosis Expert are mapped onto two VIDs, and the

System Output AFO is assigned to one of the VIDs. The distributed System Output

scheme is illustrated in Figures 41 and 42. This method reduces the work load of the

System Output AFO by allocating its load over multiple VIDs. For example, when two

VIDs are available, two instances of the System Output AFO are.employed, one per VID.

Each Event Diagnosis Expert AFO sends its output messages tO the local instance rather

than to a centralized System Output AFO. As a result, the computational load, and

accordingly the bottleneck effect, of the System Output AFO is minimized.

75



VID #1

system

VID #2

health jtlds

system

Figure 41 - Distributed Allocation of the System Output AFO - 2 VIDs

VID #1 VIO r2 VID #3

Jtids

Figure 42 - Distributed Allocation of the System Output AFO - 3 VIDs

76



hitialization(ms) Steady-State(ms] Totrd Execution(ms)

1 775 553 1328

2 763 386 1149

3 763 277 1040

4 748 194 942

5 766 218 984

6 ' 764 179 943

7 638 163 801

8 766 163 929

9 750 164 914

10 766 163 929

11 638 153 791

12 748 155 903

13 702 153 855

Table 16 - Performance of the Event Diagnosis Expert Utilizing the

12.glI.g/l.dgn_ Load Balancer and Distributed System Output

The AF-FTPP Interface and the dependency load balancer were augmented to allocate local

instances of the System Output AFO. Further, the dependency load balancer was

employed to generate AFO to VID mappings for the Event Diagnosis Expert for one to

thirteen VIDs. Subsequently, the resultant load modules were executed and the

performance of the application was recorded. These metrics are presented in Tables 16 and

17. Further, the speedup is illustrated in Figure 43.

A comparison of the speedup achieved using the centralized allocation of the System Output

AFO with that attained utilizing the distributed method is illustrated in Table 18 and Figure

44. As expected, the p .a'formance of the distributed algorithm was significantly better than

that of the centralized method. Accordingly, this analysis indicates that the use of a

centralized output AFO will constrain the performance of a parallelized application.

77



14_lrnber of VIDs Relative S_tmedup

1 1

2 1.43

3 2.0

4 2.85

5 2.54

6 3.09

7 3.39

8 3.39

9 3.37

10 3.39

11 3.61

12 3.57 .

13 3.61

Table 17 - Steady-State Speedup - Distributed System Output

Allocation via _ Load Balancer

Speed

Up

4

3

2

1 _

0

0
• I ; ; I I

5 10 15

Number of Pro©essors

Figure 43 - Steady-State Speedup Using the Dependency Load Balaneer and
a Distributed Output Process

78



Speedup Centralized

,"

1 1

2 1.81

3 1.76

4 2.44

5 2.0

6 2.35

7 2.25

8 2.72

9 2.50

10 2.53

11 2.19

12 2.67

13 2.40

Speedup Distributed

1

1.43

2.0

2.85

2.54

3.09

3.39

3.39

3.37

3.39

3.61

3.57

3.61

Table 18 - Centralized Output vs. Distributed Output"
Speedup Comparison

Speed

Up

4

3

2

1

0 i i
0 5 10 15

Number of Proceseorl

Figure 44 . Centralized Output vs. Distributed Output Speedup

79



4.8 Performance of the Real-Time Controller

The Real Time Controller task suite was executed on one to 15 simplex VIDs using both

the connectivity-based load balancing scheme and the dependency-based load balancing

scheme. The seven "external input AFOs" (that is, mis056, node1, main78, fig058,

amvrat, ma/100, and ma/nS0) were primed by invoking a procedure which sent messages

to each of these AFOs. All terminating nodes transmitted a message to the system_output

AFO (see Figure 15). Furthermore, to parallel the analysis of the Event Diagnosis Expert

the computational load applied to each AFO was varied from a no load state to a uniform

150 ms load. Similarly, three times were recorded: (1) the initialization time, (2) the

steady state time, and (3) the total time.

measurements.

Tables 19 through 22 present the results of these

Irfitialization(ms) Steady-State(ms) _ Tg_ Execution(ms)

1 3551 3916 7482

2 3327 3050 - 6376

3 3903 2530 6433

4 3919 2365 6283

5 3903 2253 6156

6 3821 1940 5761

7 3903 2038 5940

8 3903 2122 6025

9 3343 2130 5473

10 3327 1917 5244

11 3919 1884 5803

12 3343 1965 5308

13 3327 2015 5341

14 3343 1740 5083

15 3247 1831 5078

Table 19- Performance of the Real Time Controller Task Suite

Utilizing the _7.flllg£lJ._ Load Balancer

80



_/umber of VIDs _ Steady-State(ms)

1 3551 8524

2 3343 6485

3 3903 3987

4 3919 3520

5 3903 3212

6 3821 2663

7 3903 2681

8 3919 3024

9 3343 2688

10 3327 2461

11 3919 2602

12 3327 2583

13 3343 2718

14 3343 2408 -?

15 3247 2394

Total Execution(ms)

12074

9828

7889

7422

7114

6484

6582

6943

6029

5786

6521

59O9

6059

5750

564o

Table 20 - Performance of the Real Time Controller Task Suite

Utilizing the ._._,BgglJ._X Load Balancer with Computational Load

Number of VIDs "Initialization(ms) Steady-State(ms) Total Execution(ms)

1 3551 3916 7482

2 3247 2774 6020

3 3791 2477 6268

4 3727 1665 5391

5 3247 2286 5533

6 3791 2079 5868

7 3727 1558 5284

8 3711 1572 5283

9 3807 1910 5716

10 3791 1849 5638

11 3247 2034 5281

12 3247 2010 5256

13 3807 1822 5628

14 3711 1603 5313

15 3247 1952 5198

Table 21 - Performance of the Real Time Controller Task Suite

Utilizing the _ Load Balancer

81



Number of VIDs • _ Steady-State(ms)

1 3551 8524

2' 3247 4947

3 3791 3951

4 3711 2317

5 3247 3127

6 3791 2801 -

7 3727 2067

8 3727 1994

9 3807 2380

10 3791 2276

11 3247 2538

12 3247 2456 ..

13 3807 2201

14 3727 2007

15 3247 2349

T,oml
\

Execution(ms)

12074

8193

7741

6027

6373

6591

5794

5721

6187

6O66

58OO

5701

6OO6

5733

5595

Table 22 - Performance of the Real Time Controller Task Suite

Utilizing the _ Load Balancer with Computational Load

The performance analysis for the Real Time Controfler closely parallels the evaluation of

the Event Diagnosis Expert described in Section 4.3. The initialization times were

relatively constant despite the AFO to VID mappings. The computations for speedup were

based upon the steady state times and reflect the increase in performance relative to the

situation where a single processor executes the entire AFO suite. Maximum speedup

values of 2.25 using the connectivity load balancer and of 2.51 us'ing the dependency load

balancer were aa._ined when the AFOs (without an additional computational load) were

alIocated to multiple VIDs. These performance values are rather modest and are

comparable to those of tlT..eEvent Diagnosis Expert. When each AFO was given a constant

150 ms computational load, the speedup characteristics of this task suite improved

substantially, reaching maximum speedup values of 3.56 and 4.28 for the connectivity and

dependency load balancers, respectively. Tables 23 and 24 represent the speedup for the

two load balancing strategies; Figures 45 and 46 graphically depict the "r_edup. In

general, the.dependency load balancing strategy provided marginally better AFO to VID

allocations than the connectivity load balancing scheme, resulting in greater performance as

depicted in Figure 47.

82



Number of VIDs Speedup Speedup
l T.zaza.ta F.,xmLLS_0_m 

1 1.00 1.00

2 1.28 1.31

3 1.55 2.14

4 1.66 2.42

5 1.74 2.65

6 2.02 3.20

7 1.92 3.18

8 1.85 2.82

9 1.84 3.17

10 2.04 3.46

11 2.08 3.28

12 1.99 3.30

13 1.94 3.14

14 2.25 3.54

15 2.13 3.56

Table 23 - Steady-State Speedup for the Real Time controller Task Suite
Utilizing the _ Load Balancer

Speed Up

Figure 45.

• I " I ' I " I ' I " I " I ' | ' I ' I ' ! " I ' I " I " I

1 2 3 4 5 6 7 8 9 101112131415

Number of Processors

load

• no load

Speedup Comparisons for the Real Time Controller Task Suite

Utilizing the .C,.0,/I.UgglJ._ Load Balancer

83



Number of VIDs Speedup Speedup-
 kLF,aaa_I,md F,agad.59..mg

1 1.00 1.00

2 1.41 1.72

3 1.58 2.16

4 2.35 3.68

5 1.71 2.73

6 1.88 3.04

7 2.51 4.12

8 2.49 4.28

9 2.05 3.58

10 2.12 3.74

11 1.92 3.36

12 1.95 3.47

13 2.15 3.87

14 2.44 4.25

15 2.0I 3.63

Table 24 - Steady-State Speedup for the Real Time Controller Task Suite
Utilizing the _ Load Balancer

5

Speed Up i"

0 Tr[rl " I T i " i ' I ' I ' I ' I ' I " I " I ' I

. °

Figure 46.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

load

no load

Number of Processors

Speedup Comparisons for the Real Time Controller Task Suite
Utilizing the ]_.2.¢.ndgngg Load Balancer

84



Speed Up

Figure 47

4

0 " I " I " I " I " I " I " I " i " I " I ' I " I " I ' I " I

0 1 2 3 4 5 6 7 8 g 1011 12_1"31415

1

Number of Processors

Connectivity Load Balancer vs. Dependency Load Balancer
Speedup Comparison

dependency

connectivity

One of the goals of the apptication of AF methodology to the Real Time Controller task

suite was to stress the computa.tional and memory management resources of the FTPP. In

the computations arena, it was desirable to determine how well the FTPP performed when

a single VID was assigned the entire computation load as well as when the suite of 15 VIDs

shared this load. Not surprisingly, the FTPP survived quite well in both cases. However,

it is somewhat astonishing that approximately 7 seconds were required to execute the series

of 57 computationaLly unloaded AFOs when all were allocated to a single VID and that

when the AFOs were shared among 15 VIDs the total execution time on a single VID was

still a lofty 5 seconds. Of course, in both situations the initialization time was significant.

Yet even with initialization time excluded, the steady state times were almost 4 seconds and

2 seconds for the single VID and the 15 VID cases respectively. (Refer to the bold values

in Tables 19 and 21). In an effort to identify the time sinks, the procedure timings were

collected as described previously in Section 4.1. These timings were collected in two

cases: (1) all 57 AFOs were assigned to a single rID and (2) the 57 AFOs were distributed

among 15 VIDs. Although aU procedure timings were measured, some routines were

particularly noteworthy because they either required a significant amount of time or were

invoked numerous times. Table 25 indicates the procedure times for the single VID case.

85



malloc 391 0.53 208

lwrite 261 1.77 464

lread 12375 0.39 4816

lrewrite 718 0.31 224

tsk_loop 75 26.70 2003

port_hum i34 16.3.8 2195

at_go I 3536 3536

at_exec 75 1.45 109

exee_afo 74 16.74 1239

Table 25 - Procedure timing for the Real Time Controller Suite (1 VII))

When the 57 tasks were allocated among the 15 VIDs, similar data were collected.

However, these values were collected on a single VID, specifically the VID that hosted the

system output AFO. Table 26 presents these results.

Procedure Num. of Calls _

malloc 345 0.70 240

lwrite 203 2.36 480

lread 8242 0.32 2640

lrewrite 149 0.64 96

tsk_loop 23 22.61 520

port_hum 134 15.95 2003

af...go 1 3232 3232

af_.exec 236 3.08 728

exec_afo 21 8 168

Table 26 - Procedure timing for the Real Time Controller Suite (15 VII)s)

These results identify areas which are possibly candidates for optimization because of the

aggregate amount of time necessary for execution of any particular procedure. A couple of

inefficiencies are known:

I* The tsk__loop is a procedure which is executed prior to execution of the AFO

task and which returns the primed AFO with the largest importance.

86



Q

o

However, because the searching mechanism checks the priming conditions of

all AFOs even though only a subset of all AFOs is active on any particular

VID, tskloop requires a substantial time expenditure per invocation.

Although the execution time for each call to lread is not substantial, the

number of calls warrants investigations into the efficiency of that routine and

into the frequency of its use. It is a List Management System procedure

which returns an object associated with a node by manning a linked list in

search of the requested object.

The a/_go procedure initializes the AF, all the AFOs and the port tables.

Although it is an initialization function and, consequently, not of primary

concern for optimization of steady-state functions, time savings would be

reaped in initializing only those AFOs which execute on any particular VID.

The Real Time Controller task suite did exercise the memory management policies in the

AF-FTPP system. In fact, the incorporation of this 57 AFO suite abruptly identified the

bounds. In the AF-FTPP system there are three memory management strategies

corresponding to each memory classification:

1. program code (includes FTPP Operating System, AF, AFOs and global

variables)

2. task stack space

3. heap space

The sizes of these memory areas are fixed at link time. The size of the program code is

obviously not dynamic, and it resides at an address specified at lhak time. The task stack

area is timed in size even at the task level; that is, each task's stack is allocated at an address

specified at run dme. Consequently, the heap size is also fixed but characteristic of heaps,

blocks are allocated at run-time upon request. The size of the program code and the task

stack space are functions of the number of tasks; the amount of heap space is determined

by the residual memory.

The initial attempts to execute the 57 task suite failed because of memory constraints. In

one case, the heap space was exhausted even before initialization was complete. This

problem was resolved by decreasing the size of each task stack to a mere 2560 bytes. The

selection of this value precluded the use of debugging facilities because of the lack of stack

space. It is obvious that the task stack space is severely limited in this test ease in which

87



the AFOs perform no real function. In fact, the current system (that is, AF-FTPP

Operating System and processor hardware) cannot accept an application consisting of

numerous AFOs which require significant allocation of local variables.

4.9 Performance of the Real-Time Controller with Distributed Output

The previous analyses of the real-rime controller may be tainted by the fact that a single

system_output AFO is invoked 18 dines on the VIE) from which the data was collected.

This inca'casesthecomputationalburden on thisVID inadditiontotheotherAFOs which

have bccn allocatedto thatparticularVID. The timing data includes thisadditional

overhead which certainlyis not representativeof the majority of VIDs. In order to

normalize these factors, the functionality of the system_output AFO was distributed among

the VIDs such that each VID invokes a local system_output rather than sending a message

to a remote system_output AFO. This concept is described in Section 4.7 in detail.

An experiment using a 15 VID distribution and the dependency load balancer generated a

maximum steady-state execution time of 849 ms. This is considerab}y lower than the 1952

ms (see Table 21) measured when there was a single system_output AFO. The computed

speedup is 4.61 which is essentially a 130% increase in performance. Figure 48 depicts

these results. It can be seen that funnelling all output through a single system_output AFO

is truly a major bottleneck.

Time

(ms)

4.10

3OOO

2000..

1000

U'J
¢11

15

Number of processors

• Singteoutput

[] Distributedoutput

Figure 48 - Execution times of the Real Time Controller Task
Suite with Single system_output vs. Distributed system_output

Improving the Activation Framework Scheduler

88



T

As discussed in Section 2.2, all AFOs are initialized on all VIDs regardless of the AFO to

VID distribution. This method was incorporated because at the time that these analyses

were performed, only homogeneous load modules could be downloaded to the FTPP.

However, this approach is inefficient because the initialization of all AFOs increases the

FTPP memory requirements and reduces the available FTPP throughput. The memory

requirements are increased, because the initialization of each AFO involves a task creation

and the allocation of a corresponding task stack. Since AFOs are initialized on each VID

but are invoked on only one, many AFO tasks are needlessly created. Furthermore, the

initialization of all AFOs on all VIDs decreases the performance of a parallelized

application, because the time required to search the AFO lists increases (since the data

structures for both the local and remote AFOs are stored in these lists). For instance, when

the AF decides the next AFO to schedule, each AFO is extracted from the AFO list and

queried to determine if it is primed. Since this list unnecessariiy includes the remote AFOs,

the time required to search this list is longer than if the list onl3t contained the local AFOs.

In thisanalysis,the AF-FTPP schedulerwas improved by determiningwhether or not an

AFO resideson the VID before parsingthe associatedlist.Itwas speculatedthatthis

improvement would streamlinetheschedulingdecisionand increasethepcrforrnanceof the

application.

4.10.1 Impact on the Event Diagnosis Expert

The dependency load balancer was employed to generate AFO to VID mappings for the

Event Diagnosis Expert for one to thirteen VIDs. Additionally, the distributed System

Output AFO scheme was utilized. Subsequently, the performance metrics were obtained.

These measurements are presented in Tables 27 and 28. Further, the speedup is illustrated

in Figure 49.

A comparison of the speedup achieved using the unenhanced scheduler with that attained

using the improved scheduler is illustrated in Table 29 and Figure 50. As expected, the

performance of the Expert improved using the enhanced algorithm.

89



Number of VIDs _ Steady-State(ms)

1 775 553

2 763 352

3 763 238

4 748 184

5 766 194

6 764 157:

7 638 136

8 766 136

9 750 137

10 766 136

11 638 146

12 748 144 :

13 702 145

Total Execution(ms) :

1328

1115

1001

932

960

921

774

902

887

902

784

892

847

Table 27 - Performance of the Event Diagnosis Expert Utilizing the

Dependency Load Balancer, Distributed System Output, and
Improved AF-FTPP Scheduler

Relative S t_edup

1 1

2 1.57

3 2.32

4 3.01

5 2.85

6 3.52

7 4.07

8 4.07

9 4.04

10 4.07

11 3.79

12 3.84

13 3.81

Table 28 Steady-State Speedup - Distributed System Output, Dependency
Load Balancer, and Improved AF-FTPP Scheduler

9O



5

Speed
Up

4

3

2

I I • I

5 10 15

Number of Processors

Figure 49 - Steady-State Speedup Using the Dependency Load Balancer,
a Distributed Output Process, and an Improved Scheduler

91



Number of VIDs

1

2

3

4

5

6

7

8

9

10

11

12

13

Speedup Distributed Speedup Distribhted Output &
Improved Scheduler

1 1

1.43 1.57

2.0 2.32

2.85 3.01

2.54 2.85

3.09 3.52

3.39 4.07

3.39 4.07

3.37 4.04

3.39 4.07

3.61 3.79

3.57 3.84

3.61 3.81

Table 29 - Speedup - Distributed Output vs. Distributed
Output with Improved Scheduler

/

Speed
Up

5

4

3

2

1 Scheduler

0 q ,Distributed Obtput a

0 5 10
|

15

Number of Processors

Figure 50 - Distributed Output vs. Distributed Output with Improved
Scheduler

92



4.10.2 Impact on the Real-Time Controller

Since the scheduler improvements were incorporated to eliminate the unnecessary checking

the priming conditions of AFOs which are not resident on a particular VID, the Real Time

controller application was executed with this optimization. The procedure timings similar

to those of Table 26 were collected to identify the performance improvements for the case

when the 57 AFOs are distributed among 15 VIDs. These results are presented in Table

30. A comparison of these results with those of Table 26 indicates a significant decrease in

the number of invocations of malloc, lwrite, Irewrite, and tsk_loop. Conversely, there was

a noticeable increase in the number of calls to af_exec presumably resulting from the

diminished execution time of the scheduling loop.

Procedure Num. of Calls _

maUoc 316 0.61 " 192

lwrite 188 1.87 352

lread 6671 0.58 2512

lrewrite 86 0.56 48

tsk_loop 11 4.36 48

port_hum 134 14.28 1987

af_go 1 3232 3232

af_exec 492 2.29 1121

exec_afo 5 12.60 63

Table 30 - Procedure timing for Real-Time Controller Suite

with Improved Scheduler (15 VIDs)

In addition, the total steady state execution time was 620 ms (versus 1952 ms in the

original case). It shouM be noted that these timing values reflect not only the improved

scheduler but also the effects of the distributed system output. (Refer to Figure 51).

93



Time

(ms)

300O

2OOO

1000

0

tn
o'J
v=-

[] Sin¢3teoutput

• 0_bu=d output

[] + ImprovedSchd

15

Number of processors

Figure 51 - Execution times of the Real Time Controller Task

Suite with Single system_output vs. Distributed system.output vs.

Distributed system_output and Improved Scheduler"

4.11 Performance Evaluation with Redundancy Management

In the analyses discussed previously the redundancy management capabilities of the FTPP

were ignored. Not only were all AFOs allocated to simplex virtual groups but the FTPP's

intrinsic redundancy management functions were inactive. Since one of the benefits of use

of this computer system is its fault tolerant aspects, it is highly desirable to evaluate the

FTPP-AF system with the redundancy managements functions.

Redundancy management requires the invocation of two additional functions. The

Reconfiguration function is required to inidagy configure the simplex processors as fault

masking groups which .are capable of detecting faults. In addition, the Fault Detection and

Isolation function (FDI) must actively monitor the fault detection mechanisms in order to

protect the system from failure.

Because of the memory constraints encountered with the Real-Time Controller application

and because both of the additional functions have rather ambitious stack requirements, the

Event Diagnosis Expert application was chosen to host this series of tests. This selection

permits the use of the larger task stack spaces required for the incorporation of these two

redundancy management functions.

94



Sincethegoalof thetestwasto examinetheimpactof the redundancy management upon

the steady-state execution of the AFOs and since the reconfiguration is executed only upon

request, the reconfiguration of the system into four triplexes was completed prior to the test

initiation. On the other hand, FDI invocation is a periodic task which is invoked each

scheduling cycle concordant with the AFO scheduling mechanism. Consequently, the

timing data reflects only the invocation of the FDI redundancy management function.

Moreover, since no fault is present during the execution, the timing data reflects only the

minimal overhead for FDI. More aggressive tests were not conducted because the current

implementation is structured to execute the AFO suite only once. The AFOs were allocated

to these four triplexes by the dependency load balancer. In addition, the system_output

was distributed and the scheduler improvements discussed in Section 4.10 were in effect.

At the completion of the test each processor computed the sternly-state execution time based

upon its local clock. Since these clocks are not synchronized, the clock values reported

even by members of a VID are not exact. In fact, they frequently differed by 1 or 2 clock

ticks (that is, 16 ms or 32 ms). The execution times stated are the averages of the times of

the members of the VID with the highest values for execution time.

Since this series of tests introduces the concept of redundant virtual groups, an initial test

was conducted to create a baseline for comparison purposes. This initial test reflects the

steady-state time for execution of the 13 AFOs on four triplexes without invoking FDI.

This time was 207 ms. With execution of FDI periodically, the execution time became 254

ms. The overhead of FDI in this system of 13 computadonally void AFOs is 18%.

95



200

Time • NoFOI

(m,) [] FDI
100

0
4

-. Number of Triplexes

Figure 52 - Execution times of the Event Diagnosis Expert Task

Suite with and without FDI (no additional computational load per AFO)

Since the AFO suite is devoid of computational activity, a disproportionate component of

the execution time represents the operating system overhead. In an attempt to normalize

this factor, a 150 ms computational load was applied to each AFO (excluding the

system_output AFO). The steady-state execution time of 13 AFOs without F'DI was 593

ms; die same test with FDI required 641 ms. FDI now accounts for 7% of the overhead.

Furthermore, in both sets of tests FDI reqtfired a fixed amount of time (that is, 47 ms).

8OO

6OO

r.

Time 400
(ms)

20O

4

Number of Triplexes

Figut'e 53 - Execution times of the Event Diagnosis Expert Task

Suite with and without FDI (150 ms additional computational load. per

AFO)

96



5.0 Performance Improvements

The performance evaluation of the AF-FTPP system noted some glaring inefficiencies in

the AF-FTPP design particularly when the AFOs were distributed among multiple VIDs.

Furthermore, other areas which were not obviously inefficient could be optimized to

improve performance. The following recommendations would clearly achieve this goal:

. The method currently employed to paraUelize the AFOs across some number

of VIDs entails creating identical load modules for each VID and dynamically

invoking only those AFOs which have been assigned to any particular VID.

However, at initialization in order to create global information concerning the

existence and location of each AFO, all AFOs are created as active tasks and

initialized on each VID. This paraUeUzation proc.edure is the source of gross

inefficiencies in terms of both computationM utilization and memory

allocation. A far better approach would entail the activation of only those

AFO tasks which actually reside on a VII3. This method would reap great

savings in memory allocation. The creation of the global AFO information

could be achieved in one of two ways: (1) the global information could be

amassed statically during the load balancing s.tage and furnished to the AF

during initialization without actual initialization of the non-resident AFOs or

(2) a temporary task could be created strictly for the initialization of non-

resident AFOs.

, The Activation Framework is structured upon the List Management System

which performs list manipulation functions. Although these mechanisms are

extremely versatile and provide dynamieism in terms of creation and deletion

of data structures they tend to be very costly in processing time because the

searching mechanisms are essentially sequential. Since the AF-b'TPP invokes

LMS pr_edures (paracularly Iread) frequently to retrieve global AFO status

information, significant benefit would be derived by incorporating a fast

searching mechanism such as a hashing function into at least the lread

procedure. Alternatively, if the characteristics of the desired application can

be specified compromises may be agreed upon which maintain some of the

important features of the AF while dispensing with some of the more costly

features. For example, if the application did not require dynamic instantiation

of AFOs many benefits could be evoked. The allocation of AFOs to VIDs

97



would bc establishedpriorto linktime with the staticglobalknowledge of

AFOs such as port numbcrs, VII) numbers, and service IDs. This

improvcmcnt decreasesinitializationtime in instantiatingAFOs which will

notbc executed on theparticularVIE),decreasessearchtimcsof listsbecause

listsarc shortcr,and relievesthememory management crunch. On theother

hand, implementation of thistype of scenariocomplicates the migration of

AFOs to other VIDs. (The entiretopicof functionmigrationhas yet to bc

addressed.)

3_ It is obvious from the analysis of the Event Diagnosis Expert that both the

connectivitybased loadbalanccrand thedependency based load balanccrsarc

sub-optimal.The connectivityloadbalancerhas been compared directlywith

a hand optimized distribution(Section4.5)with'resultsfavoring the hand

calculatedversion. Thus far,two metricshave affectedthe load balancing

strategy:(1) the connectivityload balancer attempted to automatically

distribute the work load by minimizing the inter-VlD connectivity and (2) the

dependency load balancer aimed at maximizing parallelism. A more

sophisticated load balancing scheme using both of these parameters would

hopefully create a workload distribution which is "more optimal" than either

of the strategies developed to date. This certainly would increase the overaU

performance of the application.

98



6.0 Conclusion

In brief, thefollowing work wascompletedduring KnowledgeRepresentationinto Ada

ParallelProcessingcontract:

1. TheActivation Framework and Fault Tolerant Parallel Processor Operating

System were adapted to permit the execution of the Event Diagnosis Expert of

the Adaptive Tactical Navigator on the FTPP (Refer to Sections 2.2 - 2.4).

2. The AF and Event Diagnosis Expert were analyzed, a number of inefficiencies

were identified, and a corresponding set of improvements were incorporated

(Sections 4.1 and 4.2).

3. The Event Diagnosis Expert was executed on multiple processors of the

FTPP, and the advantages and disadvantages of its parallel execution were

examined (Section 4.3).

4. An AFO to VID mapping analysis was completed. In this examination,

CSDL compared several mapping schemes. The results of "this test were

utilized to upgrade the automatic distribution algorithm (Sections 4.5 and

4.6).

5. A computation loading analysis was performed. In this investigation, we

used artificial loads to examine the effect that more computationally intensive

AFOs would have on the parallel execution of the AF on the FTPP (Sections

4.4 and 4.7).

6. The AF methodology was employed to execute a computationally stressful

and memory-intensive AFO suite (that is, the real time controller) on the

multiple processors of the FTPP (Sections 4.8 - 4.10).

7. The Redundancy Management capabilities of the FTPP were incorporated into

theAF-FTPP Methodology and their overhead was measured (Section 4.11).

With respect to the aforementioned work, the following items are a summary of the results

that were attained and conclusions derived during the KtLkPP project:

1. The Event Diagnosis Expert can be executed on the FTPP using the AF

Methodology.

2. The AF Methodology and AF-FTPP Interface can be enhanced to be more

efficient. As detailed in Section 4.2, we improved the performance of the

Event Diagnosis Expert by 258, 293, and 209 percent for one, two, and three

99



processorsrespectively. Further improvements can be incorporated into the

AF Methodology to optimize its sequential and parallel performance.

3. When utilizing the multiple processors of the FTPP and an CSDL developed

automatic load balancer, the speed of the Event Diagnosis was increased by a

factor of 4.07 (in this case, 7 processors were employed).

4. The AFO to VII) mapping investigation indicateM that multiple factors should

be considered when determining a distribution. Nonetheless, the

incorporation of several dissimilar factors, which is common and desirable,

makes the automatic load balancing algorithm considerably more complex.

5. The AFO computational loading analysis supported our speculation that the

performance of an application using the AF Methodology would improve if

the AFOs are more computationally intensive. This conclusion indicates that

the parallel execution of the AF Methodology _11 be more efficient if each

AFO represents multiple Horn Clauses rather than. merely a single Clause.

6. The impetus to use the AF Methodology to execute a real time controller was

to demonstrate that the concept is scaleable and to better stress the capabilities

of the FTPP. This test showed that this Methodology can be used to execute

a more difficult application on the FTPP (57 AFOs rather than only 13) while

still attaining considerable performance speedup (6.32 when using an

automatic load balancer and 15 processors).

7. The FTPP's Fault Detection and Isolation process was incorporated in the

Event Diagnosis Expert (augmented with a 1S0 ms. computational load to

normalize the test) and decreased the performance of the application by only

seven percent.

The aforementioned work, results, and conclusions were discussed in detail in Section 4.

Refer to that section if more information is desired.

In addition, Section 5.0 detailed a number of known inefficiencies which should be

rectified to increase the performance of the AF-FTPP system. Briefly, these

recommendations include:

1... Instantiated AFOs should be initialized only on those VIDs to which they have

been allocated.

2. The Activation Framework List Management System procedures should be

optimized wherever possible, particularly the lread function.

100



. A sophisticated load balancing scheme should be d_,'eloped Which maximizes

parallel execution of AFOs while minimizing inter-VID connectivity.

Based on the work completed and experience thus attained during the _P project, we

believe that completion of the following work will facilitate the integration of future AF

based intelligent navigation systems on the FTPP and make the execution of such systems

more efficient:

I* As outlined in Section 3.0, the integration of any new application (e.g. Real

Time Controller) into the AF-FTPP system involves multiple development

systems. This has been a deficiency particularly in terms of designer

productivity because of the differences in development system operating

systems commands and because of the additional steps required to transfer

files and to execute command files. It is extremely desirable to develop a

single workstation environment for generating AF-FTPP based load modules.

, The limitations of the FTPP memory management software caused several

AF-FTPP implementation and integration problems. In addition to the

memory management problems detailed in Section 4.7 incurred while

stressing the AF-FTPP system with a 57 task suite, stack space allocations by

the Activation Framework during initial integration phase generated task stack

overflows. This was remedied by allocating the variables in question in a

scratch global memory area. This solution should only be a temporary means

to deal with this problem since subsequent versions of the AF would cause

significant AF-FTPP integration issues. The development of a more efficient

memory management system is essential if more complex intelligent

navigation systems are to be executed on the FTPP in real-time.

o . The implementation of the remote data insertion and capture system needs to

be completed. In addition, the current design must be enhanced to permit

simultaneous insertion and capture of multiple messages.

, An investigation of methods by which general events can drive the AF-FTPP

scheduler should be performed. Such event driven capabilities are necessary

if all AF concepts are to be supported.

101



5. The AF-FTPP Intm'face needs to be enhanced to enable the use of Generalized

Objects. Since the preliminary version of the AF only utilizes boolean and

integer data, this Interface currently only supports the transmission and

reception of a 16-bit data word,

6. The AF-FTPP In_rface must be modified to incorporate a time facility. If

such a facility were developed, the AF deadline and time tagging capabilities

could be used.

w The applications addressed until now have been devoid of real computations.

Real applications, of course, will require AFOs to perform computations of

real variables which will be communicated to other AFOs. Incorporation of

procedures into the AFOs has yet to be addressed. '

102



7.0 References

[Ach87]

[-Bab90]

[Berl]

[-Ber2]

[Gre87]

[Gre89]

[Har87]

Acharya, N. A., Dowding, J. P., Glasson, D. P., Matchett, G. A., and

Pomarede, J. L., "ATN Software Part 1 Specification - Technical

Appendices," The Analytical Sciences Corporation, Report No. TR-

5344-2, October 1987.

Babikyan, C. A., "The Fault Tolerant Parallel Processor Operating

System Concepts and Performance Measurement", CSDL-R-2219,

Charles Stark Draper Laboratory, Cambridge, MA 02139, February

1990.

Berning, S., Glasson, D. P., Matchett, G. A., "Functionality and

Architectures for an Adaptive Tactical Navigation System," NAECON

Proceedings, May 1987.

Berning, S., Glasson, D. P., Pomarede, J. L., "Knowledge

Engineering for the Adaptive Tactical Navigator, "' NAECON

Proceedings, May 1988.

Green, P. E., Glasson, D. P., Pomarede, J. L., Acharya, N. A., "Real-

Time Artificial Intelligence Issues in the Development of the Adaptive

Tactical Navigator," Proc. Space Operations-Automation and Robotics

Workshop, NASA Johnson Space Center, Houston, Texas, August

1987.

Green, P. and Nalnani, K., "Specifications for Activation Framework

Procedure Calls and Data Structures", Real-Time Intelligent Systems

Corporation, Worcester, MA 01606, October 1989.

Harper, R. E., "Critical Issues in Ultra-Reliable Parallel Processing",

Phi:) Thesis, Massachusetts Institute of Technology, June 1987.

103



lT mw

104
\'_ • I _ i I



A. Appendix A - Software Specifications

Appendix A presents the Software Specifications for the AF-FTPP Interface.

A.1 AF-FTPP Interface File: AFO_to_VID.c

A.1.1

Process Name: Init_AFO_to_VID

In puts: None

Outputs:

Reference:

Notes:

Description:

AFO_to_VlD Table

KRAPP Final Report, Section 2.7:

None __.

This process initializestheAFO_to_VID table.The AFO_to_VID tableisused by theAF-

FTPP Interfacetodetermine which AFOs arelocalto theVID. This tableisstructuredas

an array.The index intothethearrayistheAFO Identifier,and thevalue of thetableentry

is the corresponding AFO's location (VID number). If an AFO does not exist,the

associatedtableentryisassignedto(-l).

The Init_AFO_to_VID process is created by the Automatic Load Module Generator.

105

PRECEDIiqG PAGE BLM',;K NOT FILMED



A.1.2

Process Name: Determine_SID_from_AFO

inputs: AFO Identifier

Outputs: Service Identifier

Reference: KRAPP Final Report, Section 2.2.2

Notes: None

Description:

This function returns the AFO Service ID (SID) to the calling function if the AFO is local to

the VID. If the AFO is remote, then a value of (-1) is returned. This process is invoked

when creating an AFO structure (to initialize the one of the SID fields of the Frame_Node

database) and when sending a message (to determine whether the destination AFO is local

or remote).

A.I.3

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Determine_VID_fi'om_AFO

AFO Identifier

Virtual Group Identifier

KRAPP Final Report, Section 2.2.2 :

None

This function returns the VID on which the specified AFO resides. It is invoked when

initializing the one of the VID fields of the Frame_Node database. Additionally, it is called

by the Return_Port_to_VID procedure to determine the location of a remote AFO port.

106



Interface File: App_Sex.h " . >A. 2 AF-FTPP

A.2.1

Process Name:

Inputs:

Outputs:

Reference:

Application Services that Exist

None

None

KRAPP Final Report, Section 2.7

Notes: None

Descripiion:

This process identifiesthe applicationservices(AFOs) thatexist. Itiscreated by the

Automatic Load Module Generatorand isused toallocateand.scheduletheAFOs.

A.3 AF-FTPP Interface File: Conv_Msg.c

A.3.1

Process Name:

Inputs:

Serialize_Message

Activation Framework Message

Destination VID

Outputs:

Reference:

Notes:

FTPP Message

KRAPP Final Report, Section 2.2.2

None

Description:

This process converts an Activation Framework message into an FTPP message. This

translation is reqttir_ to permit inter-VID message communication. The Serialize_Message

procedure accepts an AF message as an input parameter, parses it, converts it to the FTPP

format, and sends the resultant FTPP message to the destination VII).

107



A.3.2

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Dcserialize_Message

FTPP Message

Activation Framework Message

KRAPP Final Report, Section 2,2.3

None

This process converts an FTPP message into an Activation Framework message. The

Deserialize Message procedure accepts a message in the FTPP format, allocates memory

for the new AF message, and reformats the FTPP data to _obtain the appropriate AF

structure. Subsequently, the resultant AF message is delivered to its destination port.

A.3.3

Process Name: External_Input

Inputs: FTPP Message

Outputs: FTPP Message

Reference: KRAPP Final Report, Sections 2.2.1 and 2.2.3

N o t es: None

Description:

This process is responsible for retrieving a message received from a remote VID and

delivering it to the appropriate destination AFO port. Initially, the External_Input

procedure queries the FTPP input queue to determine whether or not a pending message

exists. If one or more messages have been received by the VID, then the first one is

removed and an AF message is created using the Deserialize Message process (Process

Description. A.3.2). This AF message is then sent to its destination port using the

Activation Framework procedure AF_Deliver. After the message has been stored in the

appropriate AFO port or if no messages are pending in the queue, the External Input

process returns to the calling procedure.

108



A.3.4
Process Name: Send_Remote

Inputs:

Outputs:

Activation Framework Message

Destination VID

FTPP Message

Reference: KRAPP Final Report, Section 2.2.2

N o t es: None

Description:

This process is responsible for sending an AF message to the appropriate remote VID. The

Send Remote procedure accepts an AF message as an input parameter, converts it to an

FTPP message by invoking the Serialize_Message procedure (Process Description A.3.1),

and sends the FTPP message to the specified destination VII) using the VITPp primitive

snd_msg.

A'.3.5

Process Name:

Inputs:

Outputs:

Reference:

AF_Exec

FTPP Message

None

KRAPP Final Report, Sections 2.2.1,'and 2.2.3

Notes: None

Description:

This process controlsthe retrievalof allmessages received from remote VIDs. Each

iteration of the AF-FTPP scheduling loop, all pending messages are removed from the

FTPP input queue and delivered to their destination AFO ports. This removal and delivery

procedure is performed by repeatedly invoking the External_Input process (Process

Description A.3.3).

109



A.4 AF-FTPP

A.4.1

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Interface File: Lv2 Init.c
w

Lv2s_Init

Activation Framework Object Transfer Function Names

None

KRAPP Final Report, Section 2.7

None

This process initializes the Versatile Real-Tune Executive (VgTX) tasks that are employed

by the AF-FTPP methodology to schedule and execute the AFO transfer functions. Similar

to the application services file (App_Sex.h - Paxx:ess Description A.2.1),it is created by the

Automatic Load Module Generator.

A.$ AF-FTPP

A.5.1

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Interface File: Mailoc.c

Heapinit

End_of_Program_Address

Beginning_.of_Task_.Space_Address

None

KRAPP Final Report, Section 2.3

None

The Heapinit proce-,,s initializes the bounds of the heap. The lower bound of the heap is the

end of the memory used by the AF-FTPP load modules. The upper limit is the beginning

of the mem0_ry utilized for the VRTX task stacks and control blocks.

This process also initializes the "taken" and "free" lists that are employed for dynamic

memory management (see Process Descriptions A.5.3 and A.5.4).

110

\"



A.$.2 "

Process Name:" SBRK

Inputs: Desir__Number_of_B ytes

Outputs: Address_of_Anocated_Memory

Reference: KRAPP Final Report, Section 2.3

Notes: None

Description:

The SBRK process returns a pointer to an unreserved section of the heap that is equal to the

desired number of bytes.

A.5.3

Process Name: Malloc

Inputs: Desired_Number_of_Bytes

Outputs: Address_of_Allocated_Memory

Reference: KR.APP Final Report, Section 2.3

Notes: None

Description:

The MaUoc procedure returns a pointer to an unused section of memory that is greater than

or equal to the desired number of bytes. This process initially scans the "free list" (memory

that has been previously deallocated) for a contiguous block of memory capable of storing

the required number of bytes. If none of the deaUocated blocks is of sufficient size, then

the SBRK procedure is invoked to allocate the necessary memory from the heap. After a

section of memory is allocated (from either the heap or the "free" list), the size and address

of this space is added to "taken" list to permit its subsequent deallocation. Additionally, a

pointer to tiffs section of memory is returned to the calling process.

111



A.5.4
Process Name: Free

Inputs:

Outputs:

Reference:

Pointer_to_Memory_to_be_Deallocated

None

KRAPP Final Report, Section 2.3

Notes: None

Description:

This proi:ess deallocates a section of contiguous memory. Specifically, the block of

memory identified by the specified pointer (input parameter) is removed from the "taken"

list and inserted into the "free" list to allow its subsequent reaUocation.

-.

112



A.6 AF-FTPP Interface

A.6.I

Process Name:

Inputs:

Outputs:

Reference:

File: Schd.c

AF_Swap

None

None

KRAPP Final Report, Section 2.2.1

Notes: None

Description:

This process suspends the calling AFO. It is used to return control to the AF-FTPP

scheduler after an AFO transfer function has completed its execution.
-.

A.6.2

Process Name: AFO_to_Exec

Inputs: AFO Service Identifier

Outputs: None

Reference:

Notes:

Description:

r

KtLAPP Final Report, Section 2.2.1

None

The AFO_to_Exec procedure is used to update the Frame_Node database to identify the

next AFO that should be executed.

113



A.6.3

Process Name: Sched

Inputs: Exec_AFO_SID

Outputs: None

Reference: KRAPP Final Report, Section 2.2.1

Notes: None

Description:

The Sched process performs the initialization of the Activation Framework and executes the

AF-FTPP scheduling loop. The primary functions of this process are outlined below:

1. Invokes the Init_AFO_to_VID process to initialize the AFO_to VID table

(Process Description A. 1.1). .

2. Calls the AF_Go procedure to create the Activation Framework Frame_Node

database and AFOs. -.

3. Executes the Lv2_Init process to initialize the VRTX tasks (Process Description

A.4.1).

4. Creates a VRTX task for each existing system service and AFO.

5. Invokes the Send_InitialMessage procedure to prime the external AFOs.

6. Calls the AF process tsk loop to determine the fh'st AFO to execute.

7. Begins the Main Scheduling loop

a. Executes the AF Exec task to determine if any input messages have been

received from remote VIDs.

b. Schedules the next AFO to be executed.

c. Calls the tsk loop procedure to locate the primed AFO with the highest

iml._...rtance.

d. If the application has completed, the loop is exited. Otherwise, it repeats (a)

through (d).
- .

A detailed discussion of the Sched process is presented in Section 2.2.1.

114



A.7 AF-FTPP Interface File: Sex.c

A.7.!

Process Name: Init_.Sex_Table

Inputs:

Outputs:

Reference:

Service Exists Flags

Service Exists Table

KRAPP Final Report, Section 2.2.1

Notes: None

Description:

This process initializes the Service Exists Table. This table identifies the application and

operating system services that will be executing in the load module. This table is used to

determine the number of Versatile Real-Time Executive CvRTX) tasks necessary to execute

the application AFOs and System tasks. Further, this table is used to associate the VRTX

taskswith theircorrespondingfunction(forexample, an AFO transferfunction).

A.7.2

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Init_Schd_Table

Service Exists Flags

Scheduling Table

KRAPP Final Report, Section 2.2.1

None

This process initializes the scheduling class field of each existing system service and AFO.

The two typesofschedulingclassesareperiodicand on_message_reception.

115



A.8 AF-FTPP

A.8.1

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Interface File: Utls.c

Test Done?

AFO Completion Count

Maximum Number of Iterations Count

Test Done Flag

KRAPP Final Report, Section 2.2.1

None

The Test_Done? process returns a TRUE or FALSE value to the calling process indicating

whether or not the application has completed its execution.

A.8.2

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Print_System_Output

AFO Identifier

AFOs_Received Table

KRAPP Final Report, Section 2.4

None

The Print_System Outpui procedure is called by the System_Output AFO, and it notes that

a message has been received by the specified AFO. The process records the AFO's identity

in the AFOs Received table.

116



A.8.3
Process Name:

Inputs:

Outputs:

Reference:

Record_AFQExec

AFO Identifier

AFO_Has Executed Table

KRAPP Final Report, Sections 2.2.4 and 4.7

Notes: None

Description:

The Record_AFO_Exec processisinvoked by the AF-FTPP schedulerto indicatethatan

AFO has been executed. The identityof thisAFO isrecorded"intheAFO_Has_Exccuted

table. :

A.8.4

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description: -

_t..SID

AFO Identifier

AFO Service Identifier

KRAPP Final Report, Section 2.2.1

None

The Irdt_SID process p.rovides the Service ID of the specified AFO. If the AFO does not

reside on the VID, this process returns a (-1) to the calling procedure.

117



A.8.5

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Description:

Imt_vD

AFO Identifier

Virtual Group Identifier

KRAPP Final Report, Section 2,2.1

None

The Init_VID process returns the VII5 on which the specified AFO resides.

A.8.7

Process Name: Assign_Port_to_AFO

In puts: AFO Identifier
Port Identifier

Outputs:

Reference:

Port_to_AFO Table

KRAPP Final Report, Section 2.2.1

Notes: None

Description:

The Assign_P6rt to_AFO updates the Port_to_AFO table to inform the AF-FTPP

Interface of the AFO to Port mappings. The Port_to AFO table is queried by the

AF_Deliver and Send_Remote procedures when determining the location (VID) of a port.

118



A.8.8

Process Name: Remm_Port..to_AFO

In putsi Port Identifier

Outputs: AFO Identifier

Reference: KRAPP Final Report, Section 2.2.2

Notes: None

Description:

If the specified AFO port is local, this process returns the AFO associated with the port.

Conversely, if the AFO is remote, then a value of (-1) is returned to the calling function.

A.8.9

Process Name:

Inputs:

Outputs:

Reference:

Return_Port_to VID

Port Identifier

Virtual Group Identifier

KRAPP Final Report, Section 2.2.2

Notes: None

Description: . •

The Return_Pccuto_VID process returns the VID on which the specified port resides.

.

119



A.8.10

Process Name: Init_T'mae_Counters

Inputs:

Outputs:

Reference:

Notes:

None

Data Structures Used for the Interval T'maing

KRAPP Final Report, Section 2.2.4

None

Description:

This pr_>cess initializes

Stop _ming procedures.

A.8.11

Process Name:

Inputs:

Outputs:

Reference:

Notes:

the data structures that are used by

Start_T'tming

Interval Identifier

Timing Array Entry

KR.A.PP Final Report, Section 2.2.4

None

the Start_Timing and

Description: "

The Start_Timing procedure records value of the local processor clock.

invoked to mark the beginning of an interval that is being timed.

This process is

120



A.8.12

Process Name:

Inputs:

Outputs:

Reference:

Notes:

Stop _ming

Interval Identifier

Txming Array Entry

KRAPP Final Report, Section 2.2.4

None

Description:

The Stop_Timing process is used to mark the end of an interval that is being measured.

This procedure reads the current time, determines the elapsed time by subtracting the

corresponding start time, adjusts this difference to make the timing facility non-intrusive,

and records this "adjusted" interval time for subsequent retriev:al.

121



7

-

122

, _ _ - z,"



B. Appendix B " Modification of the Activation Framework" .:. ---

Appendix B discusses the modifications that were made to the Activation Framework to

allow its execution on the FTPP.

o An Interface package written in Ada was incorporated into the AF source code.

It was required to permit the invocation of the FTPP C code by the Ada AF

procedures.

. The List Management System was augmented:

a. The exceptions were removed because the AF-FTPP system does not

support them. They were replaced with a corresponding set of error

definitions.

b. The Ada dynamic memory allocation scheme was replaced with the C

malloc and free procedures. This modification was performed, because

the Ada allocation and deallocation process is not supported by the AF-

FTPP system.

c. Certain data structures were redefined.

i. The constant max_size was decreased from 1024 to 400 to reduce the

memory required by the node structure.

ii. Subtypes were removed because the Ada compiler used by CSDL has

problems with this structure.

ill The Free_Node and Free_Head procedures were created to allow

dynamic deallocation of list elements.

. The AF package was altered.

a.. The want._except constant was initialized to false.

b. The pt_len and ptb_len variables were defined as constants. These

changes.were performed to permit (d).

c. Subtypes were removed because the Ada compiler used by CSDL has

problems with this structure.

d. The size attributes for the FrameNode record structures were explicitly

initialized to ease debugging.

e. The structure go struct was changed from a variant record structure to a

basic record structure. This was performedto facilitate the serialization

and deserialization of the AF messages.

123

_41.J_j___._Ilt11FN_0_I/UE]t _1uINlt P,_E_CED:,NG PAGE BLANK NOT FILMED



,

f. The type Of the msg_dead and msg_sent fields of the msgstruct record

were changed from t/me to integer. They were altered to simplify the AF-

FTPP Interface (currently these fields are not being used by the AF).

g. The order of the msgstruct record was changed to make the go_struct the

last field in the record rather than an intermediate field. This was

performed to simplify the Interface by eliminating problems associated

with the byte padding of records (a concern when considering the

serialization and deserialization of messages).

h. The a/'struct_ord was modified to include two additional integer fields,

remote_VID and local_SID which are required for scheduling the AFOs

and transmitting messages.

i. The WPI a[_swinit and aLswap procedures were removed because they

were no longer necessary.

The AF_GLOB package was created and incorporated into the AE source code.

It is a temporary scratch pad area that is required because of FTPP memory

limitations. -

5. The A1r_ FRAME package was removed for it was not required.

, The AF_ERR package was modified to remove the raise exception statements

and to add code that will alternatively print a set of the corresponding integer

identifiers.

7. The PORT NUM package was augmented.

a. The local stack variables that were moved to the scratch pad area were

removed.

b. The- source code that addressed the aforementioned local stack variables

was changed to reference the scratch pad structures.

c. The call to the pad procedure was extraneous and it was removed.

d. A C string_compare proeedia'e was employed rather than the Ada "="

function. This was done because some difficulty with Ada call was

.+ encountered during integration.

124



8. PORT__CR package

a. The local stack variables that were moved to the scratch pad area were

removed.

b. The source code that addressed the aforementioned local stack variables

was changed to reference the scratch pad structures. "

c. The call to the pad procedure was removed, because it was extraneous.

9. The ADD2ADDR package was removed, because it was not necessary.

10. The

a.

bo

C,

d.

RET_AFO package

The local stack variables that were moved to the scratch pad area were

removed.

The source code that addressed the aforementioned local stack variables

was changed to reference the scratch pad structures.

The call to the WPI af swap procedure was replaced with an invocation of

AF-FTPP Interface af_swap procedure.

The logic involving the assignment of the AFO primed field was changed.

Rather than always setting the field to false, the AFO priming function

was invoked and this field was assigned to the value of the boolean thai

was returned.

11. The AFO_INrr package

a. The local stack variables that were moved to the scratch pad area were

removed.

b. The source code that addressed the aforementioned local stack variables

.was changed to reference the scratch pad structures.

c. The creation of the standard I/O port was not required and consequently, it

was removed.

d. The call to the tsk_init procedure was removed, because it was not

necessary.

e. Calls to the AF-FTPP functions Init_VID and InitSID were added to

initialize the associated fields of the AF Frame Node database.

125



12. The

a.

b°

Co

AF DELIVER package was altered.

The local stack variables that were moved to the scratch pad area were

removed.

The source code that addressed the aforementioned local stack variables

was changed to reference the scratch pad structures.

A call to the AFO priming function was added to support a message

drivenscheduler.

13. The SND_OBJ package

a. The local stack variables that were moved to the scratch pad area were

removed.

b. The source code that addressed the aforementioned local stack variables

was changed to reference the scratch pad structures.

c. A call to the Return Port to AFO function was added to determine if the

destination AFO was local or remote. -.

d. If remote, the Return Port to VID function was invoked to locate the

destination VID and subsequently the Send_Remote_VID procedure was

called.

14. The GET_OBJ package was augmented.

a. The local stack variables that were moved to the scratch pad area were

removed.

b. The source code that addressed the aforementioned local stack variables

was changed to reference the scratch pad structures.

15. The FR_IN1T package was modified to dynamically allocate a frame pointer.

16. The MSG_CH package

a. The local stack variables that were moved to the scratch pad area were

removed.

b. The source code thataddressedthe aforementioned localstackvariables

was changed to reference the scratchpad structures.

126



17. TheTSK_LoOPpackage +
a. Thelocal stackvariablesthat weremovedto the scratchpadareawere

removed.

b. Thesourcecode that addressed the _fommentioned local stack variables

was changed to reference the scratch pad structures.

c. The main loop was removed. It was no longer necessary, because the

corresponding loop control flow was moved into AF-FTPP scheduler.

d. The references to thefrm..ptrfrmcafo field were removed, because they

were not required.

e. The invocation of the WPI af_swap procedure was replaced with a call to

FTPP interface afo to execute procedure. This change was required to

inform the AF-FI'PP interface of the next AFO to execute.

f. The call to the tsk_init procedure was extraneous and therefore removed.

g. The invocation of the AFO priming function was removed in order to

change the polling scheduler to a message driven scheduler...

h. Invocations to the lnit_SID procedure were included in the scheduling

process to determine if the AFOs were local before searching LMS

(performance improvement).

127



128



C. Appendix C - Performance Metrics "

C.1 Description of the Intervals Measured

Appendix C - Section 1 describes the procedures whose execution times were measured.

1 free

2,3 maUoc

4 lcreat

5 ldel

6 lwrite

7 Iread

8 lrewrite

9 execute

10 pad.

a procedure that releases a specified number of bytes and

places this unreserved memory in a "free" list. This

unreserved memory can be given to another process that

requests the same number of bytes or less.

a procedure that requests the allocation of a specified number

of bytes of unreserved memory, This memory is allocated

from either the heap or the "free" list.

an LMS procedure that allocates a "header" node for a linked

list and returns a pointer to the node. "

an LMS procedure that deletes a specified node from a list. "

an LMS procedure that allocates a node element, initializes

its data object, and adds it to a specified list.

an LMS procedure that returns the data object of a specified

node.

an LMS procedure that replaces the data object of a specified

node with a specified data object.

a procedure that invokes the priming function corresponding

to a specified AFO.

a procedure that pads a specified character string with a

specified number of spaces.

129

PRECEDIr'IG PAGE BLANK NOT FILMED



11

12

13

14

15

16

17, 35

18

19

20

21

f_lt_ " "

tsk_loop

ret_afo

afo_init

port_num

port_el"

af_deliver

snd_obj

get_.obj

fr_init

msg_chk

a procedure that returns the AFO and port names from a :

character string of the form "AFO/port".

a procedure that returns the primed AFO with the highest

importance.

a procedure that is invoked when an AFO completes its

execution. This procedure determines if the AFO is still

primed and suspends to the FTPP scheduler.

a procedure that initializes an AFO structure.

a procedure that searches the port table for a specified

character string and returnsits integer port identifier.

a procedure that initializes a port structure and inserts a

corresponding entry into the port table:

a procedure that delivers a specified message to the correct

port. This procedure also invokes the appropriate priming

function to support a message driven scheduler.

a procedure that sends a specified message to a specified

port. If the destination AFO is local, the A.F_Deliver

procedure is invoked. I_ the destination AFO is remote, the

message is serialized and sent using the FTPP snd_msg

primitive.

a procedure that removes a message from a specified port.

a procedure that initializes a frame.

a procedure that checks a specified port for the presence of a

message.

130
t



22 init_afo_to vid

23 af_go

24 init_test_done_flags

25 Iv2s_init

26 send_inida/_msg

27 af_exec

28 time

29

30 send_remote .-

31 serialize_msg

a procedure that initializes the AFO_to_VID table which

depicts the AFO to VID mapping.

a procedure that controls the initialization of the AF and

AFOs.

a procedure that initializes a set of flags that indicate when

the execution of the AFOs is complete.

a procedure that associates each VRTX task with the

procedure that should be executed when the task is resumed.

a procedure that primes the "Extema/Input" Event Diagnosis

AFOs by sending a set of messages.

a task that queries the FTPP input queue to determine if a

message has been received from a remote AFO. If one or

more messages are present, they are deserialized into AF

messages and sent to the appropriate AFO ports using th_

AF_Deliver procedure.

a task that requests the time from the NE (removed from the

AF-FTPP system).

the execution of the primed _,FO with the highest

importance.

a procedure that invokes the message serialization procedure

and sends the specified message to a remote VID using the

FTPP snd_msg primitive.

a procedure that serializes a message in preparation for its

transmission to a remote VII).

32 snd msg the FTPP primitive for sending a message.

131



33 sync self

34 external_input

36 deserialize msg

37 service creation

a procedure that sends a message to itself. It is used to

"scoop" all messages to this VID from the Network Element.

a procedure that removes messages from the FTPP input

queue using the FTPP get_msg primitive.

a procedure that converts FTPP messages to AF messages.

a procedure that initializes the VRTX services which exist on

the VID.

38 Total time

39 AF initialization

the length of dme required to initialize the AF and AFOs and

to execute the application.

the length of time required to initialize the AF and AFOs.

This time will, in general, remain relatively constant for all

distribution strategies, because the process is performed on

each VID.

40 AF execution the length of time from the completion of the

send_initial_msg procedure (the end of initialization) to the

completion of the application. This time varies based on the

number of VIDs involved and AFO to VID mapping.

132



C.2 Performance Measurements Using the Network Element Simulator :_ _

Appendix C - Section 2 presents the preliminary performance measurements. These

execution times were recorded when the Event Diagnosis Expert was executed on one,

two, and three VIDs in conjunction with the Network Element (NE) Simulator. These

times were used, and should only be used, to determine where the bulk of the execution

time resides and to evaluate the performance gains attained by incorporating enhancements

(illustrated in Figure C.1). The performance measurements of the "baseline" AF are

presented in Section C.2.1. The times for the "enhanced" AF are outlined in Section

C.2.2. The primary points of interest, with regard to a comparison of the performance of

the versions of the AF, are printed in bold type.

Tlme
{ms)

6000

5000

40OO

3000

2O00

1000

01

tJ_

I 2 3

Number of Processors

[] Unenhanced AF

[] EnhancedAF

Figure C.1 - Performance of the AF Versions

133



Perfof'mance Measurements Before Enhancements ::C.2.1

NUMBER OF VIDS: I

Position _ ]_.9..[..C,i_

I free 33

2 malloc-totaltime 142

3 malloc-fleelistsearch 142
4 icreat 42

5 Idel 33
6 lwrite 99

7 head 9605
8 Imwrite 400
9 execute 246

10 pad 15
11 filter (not called)
12 tsk_loop 20
13 ret_.afo (incorrect timing) -
14 afo_init 14
15 port hum 5,,1
16 porter 26
17 af_deliver 33
18 snd_obj 33
19 get_.obj 33
20 fi'_init 1

21 msg_chk (incorrect timing) -
22 init_afo_to vid 1
23 af_go 1
24 ink_test_done_flags 1
25 lv2s init 1
26 send_initial_msg 1
27 af_exec 20
28 time 20

29 cxec_afo 20
30 send_remote

31 serialize_msg
32 snd_msg
33 sync_self.(with SIM) 20
34 external_input
35 af_deliver (from ext_.input) -
36 desedalize msg
37 service creation 1

38 time - initial to completion 1

Tam/Call
(ms.)

0
0.7
0.2
0.8
0
1.5
0.5
0.3
17.7
1.1

222
Q

5.7
8
12
5.8
6.3
3.3
14

0
359
0
0
93
24
54.4
_.4

16.8

7383

0
96
32
32
0
144
4464
112
4365
16

4.437

: 80
4307
311
192
208
108
14

0
359
0
0
93
480
1088
928

336

48
7383

Total time r_luired forexecution (without S11%4or T'tm¢ task)= 5969 ms.

134



NUMBER OF VII)S: 2

position Procedure

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

free 17
malloe - total time 138
malloc - free list search 138
lcreat 42
ldel 17
lwrite 83
lread 7461
lrewrite 284
execute 200

pad 15
filter (not called)
tsk_loop 15
rct_afo(incorrecttiming)
afo_init 14

port hum 400
porter 26
at_deriver 17
snd..obj 9

gct_obj 17
fr init 1

msg...chk (incorrect timing) -
haiLafo_to_vid I

af_go I
init_test._done_ flags 1
lv2s_init 1
send_initial_msg I
af exee 15
time 15

cxec_afo 13
send_remote 4

serialize msg 4
snd_msg 4
sync_self 15
external_input (incorrecttiming)-

af deliver (from cxt_input) 12
deserialize_msg 12
service creation 1

time - initial to completion I

0
0.2
0
0
1.9
1.2
0.4
0.5
17.4
1.1

237

" 3.4

7.8
13.2

3.8

7.1

6.4
14

0

359

0
0

8O

38

53

29
4

0

4

26.7

4

1.3

32

574O

Total Tame

.

32
0
0
32:
96
3216
128
3471
16

3554

48
3126
343

"_ 64

64
108
14

0
359
0
0
80
575
800
381
16
0
16
400

48
16
32
5740

Total time required for execution (without SIM or Time task) = 4548 ms.

135



NUMBEROFVIDS: 3 "

Position Procedure

1 flee 11
2 maUoc - total time 128
3 malloc - fr_ list search 128
4 lcreat 42
5 ldel 11
6 lwrite 77
7 lread 5767
8 lrewrite 212
9 execute 152

10 pad 15
11 filter (not called)
12 tsk_loop 11
13 ret_afo (incorrect timing)
14 afo_init 14
15 port num 304
16 port cr 26
17 af_deliver 11
18 snd_obj 9
19 gct..obj 11
20 fi'_init 1

21 msg_chk (incorrect timing)
22 init_afo_to_vid 1
23 af_.go 1
24 init test_done flags 1
25 lv2s_init i
26 send initial_msg 1
27 af_exec 11
28 _ 11

29 exec_afo 11
30 send.remote 6
31 serialize_msg 6
32 snd_msg 6
33 sync_self 11
34 external input (incorrect timing) -
35 af_.deliver (from ext_input) 8
36 deserialize_.msg 8
37 service creation 1

38 time - initial to completion 1

0
0.4
0
0.4
0
1.2
0.5
0.2
17.7
2.1

244

3.4

: 8.5
12.6
1.5
3.6
1.5
14

0
359
0
0
80
55.7
61.1
28.9

0
0
0
46.5

2
2
16
4715

Total Tinae

0
48
0
16
0
96
2592
48
2689
32

2687

48
2575
327
16
32
16
14

0
359
0
0
80
613
672
318
0
0
0
512

16
16
16
4715

Total time required for execution (without SIM or'lime task) = 3537 ms.

136



C.2.2 Performance Measurements After Enhancements

_ER OF VIDS: 1

position _ ]_im...o.LCa_ Tin.Call

1 free 33 0
2 malloc - total time 142 0.6
3 malloc - free list search 142 0
4 lcreat 42 0
5 ldcl 33 0.5
6 lwrite 99 1.5
7 lread 2162 0.5
8 lrewrite 180 0.5
9 execute 46 6

I0 pad 15 I.1
11 filter (not called) - -

12 tsk_loop 20 ... 11.4
13 ret_afo 20 5.6

14 afo_init 14 2.3

15 port_num 5 9 8.5
16 port_cr 26 13.2
17 at'_deliver 33 12.5
18 snd__obj 33 15.7

19 get._obj 33 5.2
20 fr_init 1 14
21 msg_chk 83 2.5
22 init_afo to_rid 1 0

23 af go 1 751
24 ini_test_done_flags 1 0
25 lv2s_init 1 0
26 send_initial_msg 1 122
27 af_exee 20 30.4
28 time (removed) "-
29 exee_afo 20 49
30 send_remote

31 serialize_msg
32 snd msg
33 syne_self (with SIM) 20 18.4
34 external_input 20 0
35 af_deliver (from ext_input) -
36 desefialize_msg -
37 service creation I 32
38 time - initial to completion 1 2670
39 AF initialization (static) 1 903
40 AF execution (dynamic) 1 1768

Total T'llm

0
80
0

0
16
144
1040
96
275
16

229
112

"" 32
499
343
414
519
172
14
208
0
751
0
0
122
6O8

980

368
0

32
2670
9O3
1768

Total time required for execution (without SIM or T'mae task) = 2312 ms.

258% increase in performance.

137



NUMBEROFVIDS:2

Position Procedure _IIlk..9.,f_C,a_ TnrrdCall Total Ttrnc

1 free 17 0.9 16
2 malloe - total time 138 0.2 32
3 maUoe - free list search 138 0.1 16
4 lcreat 42 0 0
5 ldel 17 0.9 16
6 lwdte 83 1.5 128
7 lread 1772 0.5 800
8 Irewrite 9 2 0.3 3 2
9 execute 27 2.8 76

10 pad 15 I. 1 16
11 • filter (not called)

12 tsk_loop 17 10.3 175
13 mt_afo 13 6.2 80
14 afo_irtit 14 3.4 48
15 port_num 59 . 7.4 435

16 port_or 26 13.2 .. 343
17 af_dclivcr 17 10.1 172
18 snd_obj 9 5 45
19 get._obj 17 8.5 144
20 fr_init 1 14 14
21 msg_chk 37 1.7 64
22 init_.afo_to_vid I 0 0

23 af go 1 751 751
24 irti_test_done_flags 1 0 0
25 lv2s_init 1 0 0

26 send inifial_msg 1 64 64
27 af_exec 17 62.2 1058
28 time (removed)
29 exec_afo 13 20.5 266
30 send_remote 4 0 0
31 serialize_rnsg 4 0 0
32 snd msg 4 0 0
33 sync_self (with SIN[) 17 44.2 752
34 external_input 29 5.6 163
35 af_deliver (from ext_input) 12 11.6 139
36 desedaliT_ msg 12 1.3 16
37 service creation 1 32 32

38 time - initial to completion 1 2294 2294
39 AF initialization (static) 1 846 846
40 AF execution (dynamic) 1 1450 1450

Total time required for execution (without SIM or Time task) = 1551 ms.

293% increase in performance.

138



NUMBEROFVii)S: 3

Position Procedure

1 free 11
2 malloc - total time 128
3 mallo¢ - fr_ list search 128
4 lcreat 42
5 ldel 11
6 lwrite 77
7 lread 1588
8 lrewrite 64
9 execute 16

10 •. pad 15
11 filter (not called)
12 tsk_ioop 12
13 ret_afo 11
14 afo_init 14

15 port num 5 9
16 port_ca" 26
17 af_deliver 11

18 md_obj 9
19 get_obj 11
20 fr init 1
21 msg..chk 16
22 init_afo_to_vid 1

23 af_go 1
24 init_test_done_flags 1
25 lv2s_init 1

26 send_initial msg 1
27 af_exec 25
28 time (removed)
29 exec_afo 11
30 send_remote 6
31 serialize_msg 6
32 snd_msg 6
33 sync_self (with SIM) 25
34 external_input 33
35 af_deliver (from ext input) 8
36 deserialize .msg 8
37 service creation 1

38 time - initial to completion 1
39 AF initialization(static) 1

40 AF execution (dynamic) 1

Titre/Call
f.m 

0
0.3
0.1
0
0
1.9
0.4
0.3
3
1.1

9.7
5.8
3.4
8.5
13.8
6.8

5.1.
4.4
14
2
0
751
0
0
79
58.4

29.6
0
0
0
41
2.6
7.6
2
16
2719
844
1875

Total Ttrne

0

32
16

0

0

144

672
16
48
16

116

64
48

499
" 359

75
46
48
14
32
0
751
0
0
79
1460

326
0
0
0
1024
85
61
16
16
2719
844
1875

Total time required for execution (without SIM or Time task) = 1695 ms.

209% increase in performance.

139



NASA
_aNo-_ _,cmau_c$ ares

1. Report No. 2. Government Accesmo, No.

NA@_A CR-18745 1

4. Ti_ and Submle

Knowledge Representation into Ada Parallel
Processing

i ,,|

. ReportDocumentation Page

7. Author|s)

Tern Masotto, Carol Babikyan, and Richard Harper

9. Pecforming Organization Name and Address

Irlc.The Charles Stark Draper Laboratory,

555 Technology Square

Caa0bridge, MA 02139

3. Recig_ent'= Catalog No.

5. ReDott Date

6. Performing Organization Code

,= ,

8. Perfotm/r_ Organization Regort NO.

12. S_n_ring Agency Name and Addres=

National Aeronautics and Space Administration**

Langley Research Center

Hampton, VA 23665-5225

10. Week Unit No,

549-03-31-O3

11. Contr=ct or Grant No.

NASI-18565

13. Type of Reoort and Period Covered

Contractor Report
14. SDonsoring'.Agency Code

tS. Sul_em_t4_yNot_

Langley Technical Monitor: Sally
WRDC Technical Monitor: Victor R.

Final Report for Task I0

C. Johnson **U.S. Air Force

Clark Wright Research &

Development Center
WPAI_, OH 45433-6523

16. Abstract

The Knowledge Representation into Ada Parallel Processing project is a joint NASA and Air
Force funded project to demonswate the execution of intelligent systems in Ada on the Charles
Stark Draper Laboratory's Fauh-Tolerant Parallel Processor (FTPP). Two applications were
demonstrated--a portion of the Adaptive Tactical Navigator and a Real-Time Controller. Both
systems are implemented as Activation Framework Objects on the Activation Framework
intelligent scheduling mechanism developed by Worcester Polytechnic Institute. This report
details the implementation, result_ of performance analyses showing speedup due to parallelism
and initial efficiency imprbvements, and suggested further areas for performance improvements.

,7K, Wo,_,iSug&.t_bvAurho.(.,
Parallel Processing
Fault Tolerance

Computer Architectures

Expert Systems

Knowledge-Based Systems
19. Security C_ssif. (of this report)

Unclassified

NASA FORM 162/i OCT 88

111. Oiltribution Statement

Unclassified - Unlimited

Star Category 62

20. Security Cluaif. (of thi= INKIel 21. No. of page=

Onclassi lied

,,,,, Id

22. Price


